Letteratura scientifica selezionata sul tema "Transport nonlocal"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Transport nonlocal".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Transport nonlocal"
Shin, Hyeyum Hailey, e Song-You Hong. "Representation of the Subgrid-Scale Turbulent Transport in Convective Boundary Layers at Gray-Zone Resolutions". Monthly Weather Review 143, n. 1 (1 gennaio 2015): 250–71. http://dx.doi.org/10.1175/mwr-d-14-00116.1.
Testo completoLi, Zhipeng, Hongwu Tang, Saiyu Yuan, Huiming Zhang, Lingzhong Kong e HongGuang Sun. "Modeling Long-Distance Forward and Backward Diffusion Processes in Tracer Transport Using the Fractional Laplacian on Bounded Domains". Fractal and Fractional 7, n. 11 (15 novembre 2023): 823. http://dx.doi.org/10.3390/fractalfract7110823.
Testo completoTzou, D. Y. "Nonlocal behavior in phonon transport". International Journal of Heat and Mass Transfer 54, n. 1-3 (gennaio 2011): 475–81. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.09.022.
Testo completoLi, Dong, e Jose Rodrigo. "Remarks on a nonlocal transport". Advances in Mathematics 374 (novembre 2020): 107345. http://dx.doi.org/10.1016/j.aim.2020.107345.
Testo completoDel Sorbo, D., J. L. Feugeas, Ph Nicolaï, M. Olazabal-Loumé, B. Dubroca e V. Tikhonchuk. "Extension of a reduced entropic model of electron transport to magnetized nonlocal regimes of high-energy-density plasmas". Laser and Particle Beams 34, n. 3 (20 giugno 2016): 412–25. http://dx.doi.org/10.1017/s0263034616000252.
Testo completoShin, Hyeyum Hailey, e Song-You Hong. "Analysis of Resolved and Parameterized Vertical Transports in Convective Boundary Layers at Gray-Zone Resolutions". Journal of the Atmospheric Sciences 70, n. 10 (1 ottobre 2013): 3248–61. http://dx.doi.org/10.1175/jas-d-12-0290.1.
Testo completoSilva, S. S. A., J. C. Santos, J. Büchner e M. V. Alves. "Nonlocal heat flux effects on temperature evolution of the solar atmosphere". Astronomy & Astrophysics 615 (luglio 2018): A32. http://dx.doi.org/10.1051/0004-6361/201730580.
Testo completoGhannam, Khaled, Tomer Duman, Gabriel Katul e Marcelo Chamecki. "GRADIENT-DIFFUSION CLOSURE AND THE EJECTION-SWEEP CYCLE IN CONVECTIVE BOUNDARY LAYERS". Ciência e Natura 38 (20 luglio 2016): 552. http://dx.doi.org/10.5902/2179460x21576.
Testo completodel-Castillo-Negrete, D. "Fractional diffusion models of nonlocal transport". Physics of Plasmas 13, n. 8 (agosto 2006): 082308. http://dx.doi.org/10.1063/1.2336114.
Testo completoBychenkov, V. Yu, J. P. Matte e T. W. Johnston. "Nonlocal electron transport in spherical plasmas". Physics of Plasmas 3, n. 4 (aprile 1996): 1280–83. http://dx.doi.org/10.1063/1.871752.
Testo completoTesi sul tema "Transport nonlocal"
Morales-Casique, Eric. "Nonlocal and localized analyses of nonreactive solute transport in bounded randomly heterogeneous porous media". Diss., The University of Arizona, 2004. http://hdl.handle.net/10150/280728.
Testo completoToy, Jonathan Andrew. "A Nonlocal Model for the Segregation of Axonal Microtubules and Neurofilaments in Neurodegenerative Diseases". The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1461080485.
Testo completoDel, Sorbo Dario. "An entropic approach to magnetized nonlocal transport and other kinetic phenomena in high-energy-density plasmas". Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0336/document.
Testo completoHydrodynamic simulations in high-energy-density physics and inertial con nement fusion require a detailed description of energy uxes. The leading mechanism is the electron transport, which can be a nonlocal phenomenon that needs to be described with quasistationary and simplified Fokker-Planck models in large scale hydrodynamic codes. My thesis is dedicated to the development of a new nonlocal transport model based on a fast-moving-particles collision operator and on a first moment Fokker-Planck equation, simplified with an entropic closure relation. Such a closure enables a better description of the electron distribution function in the limit of high anisotropies, where small scale electrostatic instabilities could be excited. This new model, so called M1, is successfully compared with the well known nonlocal electron transport model proposed by Schurtz, Nicolaï and Busquet, using different collision operators, and with the reduced Fokker-Planck model, based on a small-anisotropies polynomial closure relation (P1). Several typical configurations of heat transport are considered. We show that the M1 entropic model may operate in two and three dimensions and is able to account for electron transport modifications in external magnetic fields. Moreover, our model enables to compute realistic electron distribution functions, which can be used for kinetic studies, as for the plasma stability in the transport zone. It is demonstrated that the electron energy transport may strongly modify damping of Langmuir and ion acoustic waves, while the simplified nonlocal transport models are not able to describe accurately the modifications of the distribution function and plasma wave damping. The structure of the M1 model allows to naturally take into account self-generated magnetic fields, which play a crucial role in multidimensional simulations. Moreover, magnetic fields could also be used for the focusing of energetic particles in alternative ignition schemes. The M1 model reproduces the results of the local transport theory in plasma, developed by Braginskii, in a broad range of degrees of magnetization and predicts new results in the nonlocal regime. This work constitutes a first validation of the entropic closure assumption in the weakly-anisotropic regime. It can be added to the existing tests, in the strongly-anisotropic regimes
Chrisment, Antoine. "Étude théorique du transport électronique non local dans les plasmas de fusion par confinement inertiel". Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0133.
Testo completoInertial fusion by lasers has entered a new era since ignition has been achieved. The development of a commercial reactor requires to transform one successful shot per year into several ones in a second. This means significantly improving the robustness of the implosion control. To do so the dialogue between experimental progresses and theoretical understanding must be strengthened through the creation of accurate simulation tools. This thesis addresses the problem of modeling electron heat transfer within the conduction region of the ablative flow. Given the variety of phenomena causing the distortion of the electron distribution function, it appeared that to close the macroscopic equations the approach of exactly solving reduced kinetic equations with an efficient numerical method is promising since its flexibility constitutes the most fertile ground for progressive extensions. In this manuscript, we deepen the understanding, improve and efficiently implement a reduced kinetic model whose purpose is restricted to treating the problem of quasi-static nonlocal transport within an isolated, one-dimensional and unmagnetized plasma
Silva, Suzana de Souza e. Almeida. "On the influence of nonlocal heat flux on energy transport and balance in the solar atmosphere. (Sobre a influência do fluxo de calor não local sobre o transporte e balanço de energia na atmosfera solar)". Instituto Nacional de Pesquisas Espaciais (INPE), 2017. http://urlib.net/sid.inpe.br/mtc-m21b/2016/12.24.01.22.
Testo completoNa coroa solar, o fluxo de calor é um dos principais processos de transporte de energia. Uma vez que o plasma coronal pode ser descrito como fracamente colisional, a formulação clássica para o fluxo de calor pode não ser a descrição mais precisa. Em um meio com menos colisões, o fluxo de calor terá contribuições não apenas de partículas vizinhas, mas também de partículas provenientes de outras regiões ao longo da linha de campo magnético. Assim, uma melhor descrição do fluxo de calor neste contexto pode ser oferecida por uma formulação não-local. Implementamos um fluxo de calor não-local em um modelo 3D MHD e investigamos seus efeitos na evolução térmica do sistema. Nós simulamos a evolução do plasma e campo magnético usando esse modelo considerando as seguintes formulações para o fluxo de calor: clássico (local) e não-local. O campo magnético inicial foi obtido a partir de uma extrapolação potencial da componente observada da linha de visada do campo magnético fotosférico para AR11226. Nós evoluímos o sistema impondo deslocamento dos footpoints das linhas de campo magnético. Ao final, comparamos as diferenças na evolução do plasma obtido utilizando as distintas formulações para o fluxo de calor. A inclusão de uma formulação não-local para o fluxo de calor conduz a diferenças consideráveis no perfil de temperatura média da atmosfera inferior e da região de transição em comparação com a formulação clássica. Há também diferenças notáveis quanto às contribuições do transporte de energia e dos termos de origem para a temperatura dependendo da formulação utilizada. Nossos resultados sugerem que uma formulação de fluxo de calor diferente afeta consideravelmente a dinâmica de aquecimento e a evolução da temperatura do plasma.
Nguyen, Thi Nhu Thao. "Modélisation mathématique et simulation de la dynamique spatiale de populations de campagnols dans l’est de la France". Thesis, Bourgogne Franche-Comté, 2020. http://www.theses.fr/2020UBFCD031.
Testo completoThe main objective of the thesis is to propose and analyze mathematical models based on partial differential equations (PDE) to describe the spatial dynamics of two species of voles (Microtus arvalis and Arvicola terrestris), which are particularly monitored in Eastern France. The models that we have proposed are based on PDE which describe the evolution of the density of the population of voles as a function of time, age and position in space. We have two complementary approaches to represent the dynamics. In the first approach, we propose a first model that consists of a scalar PDE depending on time, age, and space supplemented with a non-local boundary condition. The flux is linear with constant coefficient in the direction of age but contains a non-local term in the directions of space. Moreover, the equation contains a second order term in the spatial variables only. We have demonstrated the existence and stability of weak entropy solutions for the model by using, respectively, the Panov's theorem of the multidimensional compensated and a doubling of the variables type argument. In the second approach we were inspired by a Multi Agent model proposed by Marilleau-Lang-Giraudoux, where the spatial dynamics of juveniles is decoupled from local evolution in each plot. To apply this model, we have introduced a directed graph whose nodes are the plots. In each node, the evolution of the colony is described by a transport equation with two variables, time and age, and the movements of dispersion, in space, are represented by the passages from one node to the other. We have proposed a discretization of the model, by finite volume methods, and noticed that this approach manages to reproduce the qualitative characteristics of the spatial dynamics observed in nature. We also proposed to consider a predator-prey system consisting of a hyperbolic equation for predators and a parabolic-hyperbolic equation for preys, where the prey's equation is analogous to the first model of the vole populations. The drift term in the predators' equation depends nonlocally on the density of prey and the two equations are also coupled via classical source terms of Lotka-Volterra type. We establish existence of solutions by applying the vanishing viscosity method, and we prove stability by a doubling of variables type argument. Moreover, concerning the numerical simulation of the first model in one-dimensional space, we obtain a finite volume discretization by using the upwind scheme and then validate the numerical scheme.The last part of my thesis work is a project in which I participated during a Summer school CEMRACS. The project was on a subject of biomathematics different from that of the thesis (an epidemiological model for salmonellosis). A new generic multi-scale modeling framework for heterogeneous transmission of pathogens in an animal population is suggested. At the intra-host level, the model describes the interaction between the commensal microbiota, the pathogen and the inflammatory response. Random fluctuations in the ecological dynamics of the individual microbiota and transmission at the inter-host scale are added to obtain a PDE model of drift-diffusion of pathogen distribution at the population level. The model is also extended to represent transmission between several populations. Asymptotic behavior as well as the impact of control strategies, including cleaning and administration of antimicrobials, are studied by numerical simulation
Bullara, Domenico. "Nonlinear reactive processes in constrained media". Doctoral thesis, Universite Libre de Bruxelles, 2015. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209073.
Testo completoThe first system we study is a reversible trimolecular chemical reaction which is taking place in closed one-dimensional lattices. We show that the low dimensionality may or may not prevent the reaction from reaching its equilibrium state, depending on the microscopic properties of the molecular reactive mechanism.
The second reactive process we consider is a network of biological interactions between pigment cells on the skin of zebrafish. We show that the combination of short-range and long-range contact-mediated feedbacks can promote a Turing instability which gives rise to stationary patterns in space with intrinsic wavelength, without the need of any kind of motion.
Then we investigate the behavior of a typical chemical oscillator (the Brusselator) when it is constrained in a finite space. We show that molecular crowding can in such cases promote new nonlinear dynamical behaviors, affect the usual ones or even destroy them.
Finally we look at the situation where the constraint is given by the presence of a solid porous matrix that can react with a perfect gas in an exothermic way. We show on one hand that the interplay between reaction, heat flux and mass transport can give rise to the propagation of adsorption waves, and on the other hand that the coupling between the chemical reaction and the changes in the structural properties of the matrix can produce sustained chemomechanical oscillations.
These results show that spatial constraints can affect the kinetics of reactions, and are able to produce otherwise absent nonlinear dynamical behaviors. As a consequence of this, the usual understanding of the nonlinear dynamics of reactive systems can be put into question or even disproved. In order to have a better understanding of these systems we must acknowledge that mechanical and structural feedbacks can be important components of many reactive systems, and that they can be the very source of complex and fascinating phenomena.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Laborde, Maxime. "Systèmes de particules en interaction, approche par flot de gradient dans l'espace de Wasserstein". Thesis, Paris Sciences et Lettres (ComUE), 2016. http://www.theses.fr/2016PSLED014/document.
Testo completoSince 1998 and the seminal work of Jordan, Kinderlehrer and Otto, it is well known that a large class of parabolic equations can be seen as gradient flows in the Wasserstein space. This thesis is devoted to extensions of this theory to equations and systems which do not have exactly a gradient flow structure. We study different kind of couplings. First, we treat the case of nonlocal interactions in the drift. Then, we study cross diffusion systems which model congestion for several species. We are also interested in reaction-diffusion systems as diffusive prey-predator systems or tumor growth models. Finally, we introduce a new class of systems where the interaction is given by a multi-marginal transport problem. In many cases, we give numerical simulations to illustrate our theorical results
Libri sul tema "Transport nonlocal"
Morawetz, Klaus. Nonlocal Collision Integral. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198797241.003.0013.
Testo completoAtienza, Pablo Burset. Superconductivity in Graphene and Carbon Nanotubes: Proximity Effect and Nonlocal Transport. Springer International Publishing AG, 2016.
Cerca il testo completoAtienza, Pablo Burset. Superconductivity in Graphene and Carbon Nanotubes: Proximity Effect and Nonlocal Transport. Springer London, Limited, 2013.
Cerca il testo completoSuperconductivity In Graphene And Carbon Nanotubes Proximity Effect And Nonlocal Transport. Springer International Publishing AG, 2013.
Cerca il testo completoCardaliaguet, Pierre, François Delarue, Jean-Michel Lasry e Pierre-Louis Lions. The Master Equation and the Convergence Problem in Mean Field Games. Princeton University Press, 2019. http://dx.doi.org/10.23943/princeton/9780691190716.001.0001.
Testo completoCapitoli di libri sul tema "Transport nonlocal"
Burset Atienza, Pablo. "Nonlocal Transport in Graphene". In Superconductivity in Graphene and Carbon Nanotubes, 83–99. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-01110-3_5.
Testo completoSellitto, Antonio, Vito Antonio Cimmelli e David Jou. "Weakly Nonlocal and Nonlinear Heat Transport". In Mesoscopic Theories of Heat Transport in Nanosystems, 109–32. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27206-1_5.
Testo completoO’Malley, Daniel, e John H. Cushman. "Nonlocal Models for Transport in Fractal Media". In Fractals, 153–68. Boca Raton, FL : CRC Press, Taylor & Francis Group, 2017. | “A science publishers book.”: CRC Press, 2017. http://dx.doi.org/10.1201/9781315152264-6.
Testo completoOtani, Yoshichika, Takashi Kimura, Yasuhiro Niimi e Hiroshi Idzuchi. "Nonlocal Spin Valves in Metallic Nanostructures". In Spintronics Handbook: Spin Transport and Magnetism, Second Edition, 301–21. Second edition. | Boca Raton : Taylor & Francis, CRC Press, 2018. |: CRC Press, 2019. http://dx.doi.org/10.1201/9780429441189-9.
Testo completoLagoutière, Frédéric, e Nicolas Vauchelet. "Analysis and Simulation of Nonlinear and Nonlocal Transport Equations". In Innovative Algorithms and Analysis, 265–88. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-49262-9_10.
Testo completoAlvarez, F. X., D. Jou e A. Sellitto. "Nonlocal Transport Equations for Small Systems and Fast Processes". In Encyclopedia of Continuum Mechanics, 1–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-53605-6_64-1.
Testo completoAlvarez, F. X., D. Jou e A. Sellitto. "Nonlocal Transport Equations for Small Systems and Fast Processes". In Encyclopedia of Continuum Mechanics, 1–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-53605-6_64-2.
Testo completoAlvarez, Francesc Xavier, David Jou e Antonio Sellitto. "Nonlocal Transport Equations for Small Systems and Fast Processes". In Encyclopedia of Continuum Mechanics, 1903–12. Berlin, Heidelberg: Springer Berlin Heidelberg, 2020. http://dx.doi.org/10.1007/978-3-662-55771-6_64.
Testo completoHoang, Vu, e Maria Radosz. "A Note on Singularity Formation for a Nonlocal Transport Equation (Research)". In Advances in Mathematical Sciences, 227–42. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-42687-3_15.
Testo completoTsukagoshi, Kazuhito, Kenichi Oto, Sadao Takaoka, Kazuo Murase, Yukihiko Takagaki, Kenji Gamo e Susumu Namba. "Spin-Dependent Nonlocal Quantum Transport Influenced by Gate Voltage in GaAs/AlGaAs Wires". In Science and Technology of Mesoscopic Structures, 199–204. Tokyo: Springer Japan, 1992. http://dx.doi.org/10.1007/978-4-431-66922-7_20.
Testo completoAtti di convegni sul tema "Transport nonlocal"
Yu, Xin, Deyin Zheng, Jianyu Du, Chi Zhang e Wei Wang. "Integrating Nanoscale Dynamics for Enhanced Evaporation: A Theoretical Framework Addressing Nonlocal Transport in Nanopores". In 2024 25th International Conference on Electronic Packaging Technology (ICEPT), 1–4. IEEE, 2024. http://dx.doi.org/10.1109/icept63120.2024.10668497.
Testo completoMima, K., M. Honda, S. Miyamoto e S. Kato. "Effects of nonlocal heat transport on laser implosion". In Laser interaction and related plasma phenomena: 12th international conference. AIP, 1996. http://dx.doi.org/10.1063/1.50373.
Testo completoJin, Seonghoon, Sung-min Hong, Jongchol Kim, Young J. Park e Hong S. Min. "Nonlocal transport and thermal noise of the nanoscale MOSFET". In Second International Symposium on Fluctuations and Noise, a cura di Francois Danneville, Fabrizio Bonani, M. Jamal Deen e Michael E. Levinshtein. SPIE, 2004. http://dx.doi.org/10.1117/12.546941.
Testo completoHamba, Fujihiro. "NONLOCAL TRANSPORT OF PASSIVE SCALAR IN TURBULENT CHANNEL FLOW". In Third Symposium on Turbulence and Shear Flow Phenomena. Connecticut: Begellhouse, 2003. http://dx.doi.org/10.1615/tsfp3.540.
Testo completoHamba, Fujihiro. "NONLOCAL ANALYSIS OF MOMENTUM TRANSPORT IN TURBULENT CHANNEL FLOW". In Fourth International Symposium on Turbulence and Shear Flow Phenomena. Connecticut: Begellhouse, 2005. http://dx.doi.org/10.1615/tsfp4.250.
Testo completoKaganovich, I. D., Y. Raitses, A. V. Khrabrov, V. I. Demidov e D. Sydorenko. "Nonlocal collisionless and collisional electron transport in low temperature plasmas". In 2010 IEEE 37th International Conference on Plasma Sciences (ICOPS). IEEE, 2010. http://dx.doi.org/10.1109/plasma.2010.5534359.
Testo completoBychenkov, V. Y., S. G. Bochkarev, Wojciech Rozmus, O. V. Batishchev, J. J. Martinell e T. K. Soboleva. "Nonthermal tails of the electron distribution functions with nonlocal transport". In ECLIM 2002: 27th European conference on Laser Interaction with Matter, a cura di Oleg N. Krokhin, Sergey Y. Gus'kov e Yury A. Merkul'ev. SPIE, 2003. http://dx.doi.org/10.1117/12.536948.
Testo completoKlimova, A. V. "The nonlocal electron transport in transistor structures with submicron surface relief". In 2005 15th International Crimean Conference Microwave and Telecommunication Technology. IEEE, 2005. http://dx.doi.org/10.1109/crmico.2005.1565000.
Testo completoLesev, Vadim N., Anna O. Zheldasheva, Oksana I. Bzheumikhova e Cantemir M. Gukezhev. "On a Nonlocal Model with Operators of Fractional Integro-Differentiation". In 2018 IEEE International Conference "Quality Management, Transport and Information Security, Information Technologies" (IT&QM&IS). IEEE, 2018. http://dx.doi.org/10.1109/itmqis.2018.8525069.
Testo completoSibatov, Renat, Anatoly Erlykin, Vladimir Uchaikin e Arnold Wolfendale. "A Look at the Cosmic Ray Anisotropy with the Nonlocal Relativistic Transport Approach". In The 34th International Cosmic Ray Conference. Trieste, Italy: Sissa Medialab, 2016. http://dx.doi.org/10.22323/1.236.0463.
Testo completoRapporti di organizzazioni sul tema "Transport nonlocal"
Linn, R. R., T. T. Clark, F. H. Harlow e L. Turner. Turbulence transport with nonlocal interactions. Office of Scientific and Technical Information (OSTI), marzo 1998. http://dx.doi.org/10.2172/645494.
Testo completoSpizzo, G., R. B. White, S. Cappello e L. Marrelli. Nonlocal Transport in the Reversed Field Pinch. Office of Scientific and Technical Information (OSTI), settembre 2009. http://dx.doi.org/10.2172/965276.
Testo completoRax, J. M., e R. B. White. Nonlocal heat transport in a stochastic magnetic field. Office of Scientific and Technical Information (OSTI), dicembre 1991. http://dx.doi.org/10.2172/6255493.
Testo completoBrunner, S., E. Valeo e J. A. Krommes. Linear delta-f simulations of nonlocal electron heat transport. Office of Scientific and Technical Information (OSTI), gennaio 2000. http://dx.doi.org/10.2172/750428.
Testo completoD'Elia, Marta, Christian Glusa, Xiao Xu e John Foster. Machine-learning of nonlocal kernels for anomalous subsurface transport from breakthrough curves. Office of Scientific and Technical Information (OSTI), gennaio 2022. http://dx.doi.org/10.2172/1842267.
Testo completoCushman, J. H. Nonlocal transport of chemically reactive, degradable species in heterogeneous porous media. Final report. Office of Scientific and Technical Information (OSTI), luglio 1998. http://dx.doi.org/10.2172/303999.
Testo completoD'Elia, Marta, e Mamikon Gulian. Analysis of Anisotropic Nonlocal Diffusion Models: Well-posedness of Fractional Problems for Anomalous Transport. Office of Scientific and Technical Information (OSTI), gennaio 2021. http://dx.doi.org/10.2172/1763574.
Testo completoD'Elia, Marta, Mamikon Gulian, Jorge Suzuki e Mohsen Zayernouri. Fractional Modeling in Action: A Survey of Nonlocal Models for Subsurface Transport, Turbulent Flows, and Anomalous Materials. Office of Scientific and Technical Information (OSTI), settembre 2021. http://dx.doi.org/10.2172/1820001.
Testo completoKissick, M. W., J. D. Callen e E. D. Fredrickson. Required conditions for and coincident 1/1-mode activity associated with the nonlocal electron heat transport effect on TFTR. Office of Scientific and Technical Information (OSTI), agosto 1997. http://dx.doi.org/10.2172/532611.
Testo completo