Articoli di riviste sul tema "Transport neuronal"

Segui questo link per vedere altri tipi di pubblicazioni sul tema: Transport neuronal.

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "Transport neuronal".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.

1

Sammler, Esther, Stefan Titz e Sheriar Hormuzdi. "Neuronal chloride transport tuning". Lancet 385 (febbraio 2015): S85. http://dx.doi.org/10.1016/s0140-6736(15)60400-7.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

JODAL, M. "Neuronal influence on intestinal transport". Journal of Internal Medicine 228, S732 (novembre 1990): 125–32. http://dx.doi.org/10.1111/j.1365-2796.1990.tb01484.x.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Benaïssa, Ibtissem. "Analogie du transport neuronal au transport électronique en nanotechnologie". Journal of Renewable Energies 12, n. 1 (26 ottobre 2023): 9–28. http://dx.doi.org/10.54966/jreen.v12i1.115.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Le système nerveux est formé de deux types de cellules: les cellules gliales et les neurones. Les astrocytes, comme la plupart des cellules gliales, ont longtemps été considérés essentiellement pour leur rôle de support et d’entretien du tissu nerveux. Mais, de plus en plus d’évidences plaident en faveur d’une implication beaucoup plus importante des astrocytes dans la communication nerveuse. Les astrocytes sont couplés les uns aux autres par des ‘gap-jonctions’ à travers lesquels peuvent circuler divers métabolites. C’est par ces jonctions que les astrocytes évacuent vers les capillaires, le potassium extracellulaire excédentaire généré par une intense activité neuronale. A travers ce réseau d’actrocytes se propagerait par exemple, des vagues d’ions calcium dont l’effet régulateur pourrait se faire sentir dans un grand nombre de synapses en même temps. Les prolongements astrocytaires qui entourent les synapses pourraient ainsi exercer un contrôle plus global sur la concentration ionique et le volume aqueux dans les fentes synaptiques. Le réseau astrocytaire constituerait donc un système de transmission non-synaptique qui se superposerait au système neuronal pour jouer un rôle majeur de modulation des activités neuronales. A cet effet, et dans l’espoir d’éclairer les neurochirurgiens et les spécialistes qui s’intéressent aux transplantations et à une meilleure maîtrise du transport et fonctionnement de l’influx nerveux. Le présent travail apporte une approche entre le transport et les propriétés électroniques d’une jonction miniature, une ‘microjonction’, dont la nanotechnologie ne saurait se passer, l’usage de jonctions P-N, un semi-conducteur dopé P (ions positifs) et un dopé N (ions négatifs), est très utilisé pour tous les dispositifs de type diode car ne laissant passer le courant que dans un sens, ce genre de jonction fait aussi apparaître des propriétés optiques intéressantes.
4

MENZIKOV, SERGEY A. "NEURONAL MULTIFUNCTIONAL ATPase". Biophysical Reviews and Letters 08, n. 03n04 (dicembre 2013): 213–27. http://dx.doi.org/10.1142/s1793048013300065.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Here, we review the properties of a suggested mechanism for a neural ATPase complex based on our recent experimental findings. The mechanism represents a multifunctional ATPase: an enzyme that is a chloride pump and a GABA receptor. This enables new views on the ways Cl - channel transports anions and its regulation by the intra- and extracellular ions and molecules (in particular by glucose, ATP, [Formula: see text]). The hydrolytic activity of this GABA A-coupled ATPase provides the [Formula: see text] transport process the energy and determines a certain direction of ions flux across neuronal membrane. This can help with the research regarding several diseases such as epilepsy. [Formula: see text]Special Issue Comment: This project is about a multifunctional ATPase complex. Experiments involving measuring & solving individual ATPases are related with the Special Issue about FRET experiments,1 about enzymes,2 and about treatments when solving single molecules.3,4 The model suggested here is simply tested with these experimental and mathematical methods.
5

Kaye, D. M., S. D. Wiviott, L. Kobzik, R. A. Kelly e T. W. Smith. "S-nitrosothiols inhibit neuronal norepinephrine transport". American Journal of Physiology-Heart and Circulatory Physiology 272, n. 2 (1 febbraio 1997): H875—H883. http://dx.doi.org/10.1152/ajpheart.1997.272.2.h875.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Although it has been recently shown that nitric oxide (NO) and its congeners (NO(x)), including nitrosothiols, may modify catecholamine turnover in the brain, it is not known whether NO(x) affect norepinephrine (NE) uptake by sympathetic neurons. The nitrosothiol NO donor S-nitroso-acetylpenicillamine (SNAP, 100 microM for 1 h) elicited a concentration-dependent reduction in desipramine-sensitive [3H]NE uptake into PC-12 cells (66 +/- 3%; P < 0.01) or cultured rat superior cervical ganglia (74 +/- 5%; P < 0.001), whereas desipramine-insensitive [3H]NE uptake was unaffected, indicating a selective effect on uptake-1-mediated transport. Short-term coculture of PC-12 cells with microvascular endothelial cells expressing the cytokine-inducible NO synthase (NOS2) also exhibited a reduction in [3H]NE uptake (33 +/- 3%, P < 0.001) that could be prevented by the addition of the NOS inhibitor N-monomethyl-L-arginine (L-NMMA, 1 mM). Endogenous production of NO(x) by nerve growth factor-pretreated PC-12 cells also exhibited an L-NMMA-inhibitable reduction in [3H]NE uptake. Whereas SNAP resulted in a 10-fold elevation of PC-12 guanosine 3',5'-cyclic monophosphate (cGMP) content (P < 0.01), its effect on [3H]NE uptake was not mimicked by exposure to 8-bromo-cGMP. However, the inhibitory effect of SNAP on uptake-1-mediated [3H]NE transport could be attenuated by 1 mM cysteine, a sulfhydryl compound that could act as a sink for NO(x)-mediated nitrosation reactions, although cysteine did not affect the increase in intracellular cGMP with SNAP. These data suggest that an endogenous NO(x) source(s) modifies the activity of the uptake-1 catecholamine transporter in postganglionic sympathetic neurons, which, as we demonstrate, express both NOS1 and NOS3 isoforms, possibly by S-nitrosothiol-mediated nitrosation of regulatory sites on the transporter.
6

Perry, Rotem Ben-Tov, e Mike Fainzilber. "Nuclear transport factors in neuronal function". Seminars in Cell & Developmental Biology 20, n. 5 (luglio 2009): 600–606. http://dx.doi.org/10.1016/j.semcdb.2009.04.014.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Stiess, Michael, e Frank Bradke. "Neuronal transport: myosins pull the ER". Nature Cell Biology 13, n. 1 (12 dicembre 2010): 10–11. http://dx.doi.org/10.1038/ncb2147.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Staff, N. P., E. E. Benarroch e C. J. Klein. "Neuronal intracellular transport and neurodegenerative disease". Neurology 76, n. 11 (14 marzo 2011): 1015–20. http://dx.doi.org/10.1212/wnl.0b013e31821103f7.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Brenner, S. R., N. P. Staff, E. E. Benarroch e C. J. Klein. "Neuronal intracellular transport and neurodegenerative disease". Neurology 77, n. 21 (21 novembre 2011): 1932. http://dx.doi.org/10.1212/wnl.0b013e318239bf96.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Bakshi, Rachit, Shuchi Mittal, Zhixiang Liao e Clemens R. Scherzer. "A Feed-Forward Circuit of EndogenousPGC-1αandEstrogen Related Receptor αRegulates the Neuronal Electron Transport Chain". Parkinson's Disease 2016 (2016): 1–9. http://dx.doi.org/10.1155/2016/2405176.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Peroxisome proliferator-activated receptor γcoactivator 1α(PGC-1α) is a central regulator of cellular and mitochondrial metabolism. Cellular bioenergetics are critically important in “energy-guzzling” neurons, but the components and wiring of the transcriptional circuit through whichPGC-1αregulates the neuronal electron transport chain have not been established. This information may be vital for restoring neuronal bioenergetics gene expression that is compromised during incipient Parkinson’s neuropathology and in aging-dependent brain diseases. Here we delineate a neuronal transcriptional circuit controlled by endogenousPGC-1α. We show that a feed-forward circuit of endogenous neuronalPGC-1αand the orphan nuclear estrogen-related receptorα(ERRα) activates the nuclear-encoded mitochondrial electron transport chain.PGC-1αnot onlytrans-activated expression ofERRα, but also coactivatedERRαtarget genes in complexes I, II, IV, and V of the neuronal electron transport chain via association with evolutionary conservedERRαpromoter binding motifs. Chemical activation of this transcriptional program induced transcription of the neuronal electron transport chain. These data highlight a neuronal transcriptional circuit regulated byPGC-1αthat can be therapeutically targeted for Parkinson’s and other neurodegenerative diseases.
11

Vossel, Keith A., Jordan C. Xu, Vira Fomenko, Takashi Miyamoto, Elsa Suberbielle, Joseph A. Knox, Kaitlyn Ho, Daniel H. Kim, Gui-Qiu Yu e Lennart Mucke. "Tau reduction prevents Aβ-induced axonal transport deficits by blocking activation of GSK3β". Journal of Cell Biology 209, n. 3 (11 maggio 2015): 419–33. http://dx.doi.org/10.1083/jcb.201407065.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Axonal transport deficits in Alzheimer’s disease (AD) are attributed to amyloid β (Aβ) peptides and pathological forms of the microtubule-associated protein tau. Genetic ablation of tau prevents neuronal overexcitation and axonal transport deficits caused by recombinant Aβ oligomers. Relevance of these findings to naturally secreted Aβ and mechanisms underlying tau’s enabling effect are unknown. Here we demonstrate deficits in anterograde axonal transport of mitochondria in primary neurons from transgenic mice expressing familial AD-linked forms of human amyloid precursor protein. We show that these deficits depend on Aβ1–42 production and are prevented by tau reduction. The copathogenic effect of tau did not depend on its microtubule binding, interactions with Fyn, or potential role in neuronal development. Inhibition of neuronal activity, N-methyl-d-aspartate receptor function, or glycogen synthase kinase 3β (GSK3β) activity or expression also abolished Aβ-induced transport deficits. Tau ablation prevented Aβ-induced GSK3β activation. Thus, tau allows Aβ oligomers to inhibit axonal transport through activation of GSK3β, possibly by facilitating aberrant neuronal activity.
12

Carmichael, Stephen W., e W. Stephen Brimijoin. "Looking at Slow Axonal Transport". Microscopy Today 4, n. 9 (novembre 1996): 3–5. http://dx.doi.org/10.1017/s1551929500065299.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Neurons are about as polarized as cells ever get. Their axonal process can extend a distance that is up to a million times the diameter of the nerve cell body. Axons have none of the ribosomal machinery responsible for protein synthesis, so all neuronal proteins and peptides must be manufactured near the nucleus and carried out to the periphery. This distribution involves at least two distinct mechanisms, fast axonal transport, moving at almost 500 mm per day, and slow axonal transport, moving only 0.1 to 3 mm per day. It turns out that proteins of the neuronal cytoskeleton, along with many soluble cytosolic proteins, are transported exclusively by the slower process.
13

Horiguchi, Kaori, Toshihiko Hanada, Yasuhisa Fukui e Athar H. Chishti. "Transport of PIP3 by GAKIN, a kinesin-3 family protein, regulates neuronal cell polarity". Journal of Cell Biology 174, n. 3 (24 luglio 2006): 425–36. http://dx.doi.org/10.1083/jcb.200604031.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Phosphatidylinositol-(3,4,5)-trisphosphate (PIP3), a product of phosphatidylinositol 3-kinase, is an important second messenger implicated in signal transduction and membrane transport. In hippocampal neurons, the accumulation of PIP3 at the tip of neurite initiates the axon specification and neuronal polarity formation. We show that guanylate kinase–associated kinesin (GAKIN), a kinesin-like motor protein, directly interacts with a PIP3-interacting protein, PIP3BP, and mediates the transport of PIP3-containing vesicles. Recombinant GAKIN and PIP3BP form a complex on synthetic liposomes containing PIP3 and support the motility of the liposomes along microtubules in vitro. In PC12 cells and cultured hippocampal neurons, transport activity of GAKIN contributes to the accumulation of PIP3 at the tip of neurites. In hippocampal neurons, altered accumulation of PIP3 by overexpression of GAKIN constructs led to the loss of the axonally differentiated neurites. Together, these results suggest that, in neurons, the GAKIN–PIP3BP complex transports PIP3 to the neurite ends and regulates neuronal polarity formation.
14

Yonekawa, Yoshiaki, Akihiro Harada, Yasushi Okada, Takeshi Funakoshi, Yoshimitsu Kanai, Yosuke Takei, Sumio Terada, Tetsuo Noda e Nobutaka Hirokawa. "Defect in Synaptic Vesicle Precursor Transport and Neuronal Cell Death in KIF1A Motor Protein–deficient Mice". Journal of Cell Biology 141, n. 2 (20 aprile 1998): 431–41. http://dx.doi.org/10.1083/jcb.141.2.431.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
The nerve axon is a good model system for studying the molecular mechanism of organelle transport in cells. Recently, the new kinesin superfamily proteins (KIFs) have been identified as candidate motor proteins involved in organelle transport. Among them KIF1A, a murine homologue of unc-104 gene of Caenorhabditis elegans, is a unique monomeric neuron– specific microtubule plus end–directed motor and has been proposed as a transporter of synaptic vesicle precursors (Okada, Y., H. Yamazaki, Y. Sekine-Aizawa, and N. Hirokawa. 1995. Cell. 81:769–780). To elucidate the function of KIF1A in vivo, we disrupted the KIF1A gene in mice. KIF1A mutants died mostly within a day after birth showing motor and sensory disturbances. In the nervous systems of these mutants, the transport of synaptic vesicle precursors showed a specific and significant decrease. Consequently, synaptic vesicle density decreased dramatically, and clusters of clear small vesicles accumulated in the cell bodies. Furthermore, marked neuronal degeneration and death occurred both in KIF1A mutant mice and in cultures of mutant neurons. The neuronal death in cultures was blocked by coculture with wild-type neurons or exposure to a low concentration of glutamate. These results in cultures suggested that the mutant neurons might not sufficiently receive afferent stimulation, such as neuronal contacts or neurotransmission, resulting in cell death. Thus, our results demonstrate that KIF1A transports a synaptic vesicle precursor and that KIF1A-mediated axonal transport plays a critical role in viability, maintenance, and function of neurons, particularly mature neurons.
15

Hirano, Minato, Memi Muto, Mizuki Sakai, Hirofumi Kondo, Shintaro Kobayashi, Hiroaki Kariwa e Kentaro Yoshii. "Dendritic transport of tick-borne flavivirus RNA by neuronal granules affects development of neurological disease". Proceedings of the National Academy of Sciences 114, n. 37 (28 agosto 2017): 9960–65. http://dx.doi.org/10.1073/pnas.1704454114.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Neurological diseases caused by encephalitic flaviviruses are severe and associated with high levels of mortality. However, little is known about the detailed mechanisms of viral replication and pathogenicity in the brain. Previously, we reported that the genomic RNA of tick-borne encephalitis virus (TBEV), a member of the genusFlavivirus, is transported and replicated in the dendrites of neurons. In the present study, we analyzed the transport mechanism of the viral genome to dendrites. We identified specific sequences of the 5′ untranslated region of TBEV genomic RNA that act as acis-acting element for RNA transport. Mutated TBEV with impaired RNA transport in dendrites caused a reduction in neurological symptoms in infected mice. We show that neuronal granules, which regulate the transport and local translation of dendritic mRNAs, are involved in TBEV genomic RNA transport. TBEV genomic RNA bound an RNA-binding protein of neuronal granules and disturbed the transport of dendritic mRNAs. These results demonstrated a neuropathogenic virus hijacking the neuronal granule system for the transport of viral genomic RNA in dendrites, resulting in severe neurological disease.
16

Tanneti, Nikhila S., Joel D. Federspiel, Ileana M. Cristea e Lynn W. Enquist. "The axonal sorting activity of pseudorabies virus Us9 protein depends on the state of neuronal maturation". PLOS Pathogens 16, n. 12 (28 dicembre 2020): e1008861. http://dx.doi.org/10.1371/journal.ppat.1008861.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Alpha-herpesviruses establish a life-long infection in the nervous system of the affected host; while this infection is restricted to peripheral neurons in a healthy host, the reactivated virus can spread within the neuronal circuitry, such as to the brain, in compromised individuals and lead to adverse health outcomes. Pseudorabies virus (PRV), an alpha-herpesvirus, requires the viral protein Us9 to sort virus particles into axons and facilitate neuronal spread. Us9 sorts virus particles by mediating the interaction of virus particles with neuronal transport machinery. Here, we report that Us9-mediated regulation of axonal sorting also depends on the state of neuronal maturation. Specifically, the development of dendrites and axons is accompanied with proteomic changes that influence neuronal processes. Immature superior cervical ganglionic neurons (SCGs) have rudimentary neurites that lack markers of mature axons. Immature SCGs can be infected by PRV, but they show markedly reduced Us9-dependent regulation of sorting, and increased Us9-independent transport of particles into neurites. Mature SCGs have relatively higher abundances of proteins characteristic of vesicle-transport machinery. We also identify Us9-associated neuronal proteins that can contribute to axonal sorting and subsequent anterograde spread of virus particles in axons. We show that SMPD4/nsMase3, a sphingomyelinase abundant in lipid-rafts, associates with Us9 and is a negative regulator of PRV sorting into axons and neuronal spread, a potential antiviral function.
17

DuRaine, Grayson, e David C. Johnson. "Anterograde transport of α-herpesviruses in neuronal axons". Virology 559 (luglio 2021): 65–73. http://dx.doi.org/10.1016/j.virol.2021.02.011.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
18

Jones, Sara R., Joshua D. Joseph, Larry S. Barak, Marc G. Caron e R. Mark Wightman. "Dopamine Neuronal Transport Kinetics and Effects of Amphetamine". Journal of Neurochemistry 73, n. 6 (18 gennaio 2002): 2406–14. http://dx.doi.org/10.1046/j.1471-4159.1999.0732406.x.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
19

Twelvetrees, Alison E. "The lifecycle of the neuronal microtubule transport machinery". Seminars in Cell & Developmental Biology 107 (novembre 2020): 74–81. http://dx.doi.org/10.1016/j.semcdb.2020.02.008.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
20

Karten, Barbara, Hideki Hayashi, Robert B. Campenot, Dennis E. Vance e Jean E. Vance. "Neuronal models for studying lipid metabolism and transport". Methods 36, n. 2 (giugno 2005): 117–28. http://dx.doi.org/10.1016/j.ymeth.2004.11.004.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
21

Wu, Chia-wen K., Fanyi Zeng e James Eberwine. "mRNA transport to and translation in neuronal dendrites". Analytical and Bioanalytical Chemistry 387, n. 1 (18 novembre 2006): 59–62. http://dx.doi.org/10.1007/s00216-006-0916-1.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
22

Paggi, Paola, e Tamara C. Petrucci. "Neuronal compartments and axonal transport of synapsin I". Molecular Neurobiology 6, n. 2-3 (giugno 1992): 239–51. http://dx.doi.org/10.1007/bf02780556.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
23

Hoang, Tuan, Matthew D. Smith e Masoud Jelokhani-Niaraki. "Conformation and Ion Transport of Neuronal Uncoupling Proteins". Biophysical Journal 100, n. 3 (febbraio 2011): 358a. http://dx.doi.org/10.1016/j.bpj.2010.12.2148.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
24

Kelner, Gregory S., MoonHee Lee, Melody E. Clark, Dominique Maciejewski, Doug McGrath, Shahrooz Rabizadeh, Thomas Lyons, Dale Bredesen, Peter Jenner e Richard A. Maki. "The Copper Transport Protein Atox1 Promotes Neuronal Survival". Journal of Biological Chemistry 275, n. 1 (7 gennaio 2000): 580–84. http://dx.doi.org/10.1074/jbc.275.1.580.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
25

Muslimov, Ilham A., Margaret Titmus, Edward Koenig e Henri Tiedge. "Transport of Neuronal BC1 RNA in Mauthner Axons". Journal of Neuroscience 22, n. 11 (1 giugno 2002): 4293–301. http://dx.doi.org/10.1523/jneurosci.22-11-04293.2002.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
26

Namba, Takashi, Shinichi Nakamuta, Yasuhiro Funahashi e Kozo Kaibuchi. "The role of selective transport in neuronal polarization". Developmental Neurobiology 71, n. 6 (6 maggio 2011): 445–57. http://dx.doi.org/10.1002/dneu.20876.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
27

MAHER, Fran, Theresa M. DAVIES-HILL e Ian A. SIMPSON. "Substrate specificity and kinetic parameters of GLUT3 in rat cerebellar granule neurons". Biochemical Journal 315, n. 3 (1 maggio 1996): 827–31. http://dx.doi.org/10.1042/bj3150827.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
This study examines the apparent affinity, catalytic-centre activity (‘turnover number’) and stereospecificity of the neuronal glucose transporter GLUT3 in primary cultured cerebellar granule neurons. Using a novel variation of the 3-O-[14C]methylglucose transport assay, by measuring zero-trans kinetics at 25 °C, GLUT3 was determined to be a high-apparent-affinity, high-activity, glucose transporter with a Km of 2.87±0.23 mM (mean±S.E.M.) for 3-O-methylglucose, a Vmax of 18.7± 0.48 nmol/min per 106 cells, and a corresponding catalytic-centre activity of 853 s-1. Transport of 3-O-methylglucose was competed by glucose, mannose, 2-deoxyglucose and galactose, but not by fructose. This methodology is compared with the more common 2-[3H]deoxyglucose methodology and the [U-14C]glucose transport method. The high affinity and transport activity of the neuronal glucose transporter GLUT3 appears to be an appropriate adaptation to meet the demands of neuronal metabolism at prevailing interstitial brain glucose concentrations (1–2 mM).
28

Guedes-Dias, Pedro, e Erika L. F. Holzbaur. "Axonal transport: Driving synaptic function". Science 366, n. 6462 (10 ottobre 2019): eaaw9997. http://dx.doi.org/10.1126/science.aaw9997.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
The intracellular transport system in neurons is specialized to an extraordinary degree, enabling the delivery of critical cargo to sites in axons or dendrites that are far removed from the cell center. Vesicles formed in the cell body are actively transported by kinesin motors along axonal microtubules to presynaptic sites that can be located more than a meter away. Both growth factors and degradative vesicles carrying aged organelles or aggregated proteins take the opposite route, driven by dynein motors. Distance is not the only challenge; precise delivery of cargos to sites of need must also be accomplished. For example, localized delivery of presynaptic components to hundreds of thousands of “en passant” synapses distributed along the length of a single axon in some neuronal subtypes provides a layer of complexity that must be successfully navigated to maintain synaptic transmission. We review recent advances in the field of axonal transport, with a focus on conceptual developments, and highlight our growing quantitative understanding of neuronal trafficking and its role in maintaining the synaptic function that underlies higher cognitive processes such as learning and memory.
29

Gajewska, Katarzyna A., John M. Haynes e David A. Jans. "Nuclear Transporter IPO13 Is Central to Efficient Neuronal Differentiation". Cells 11, n. 12 (12 giugno 2022): 1904. http://dx.doi.org/10.3390/cells11121904.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Molecular transport between the nucleus and cytoplasm of the cell is mediated by the importin superfamily of transport receptors, of which the bidirectional transporter Importin 13 (IPO13) is a unique member, with a critical role in early embryonic development through nuclear transport of key regulators, such as transcription factors Pax6, Pax3, and ARX. Here, we examined the role of IPO13 in neuronal differentiation for the first time, using a mouse embryonic stem cell (ESC) model and a monolayer-based differentiation protocol to compare IPO13-/- to wild type ESCs. Although IPO13-/- ESCs differentiated into neural progenitor cells, as indicated by the expression of dorsal forebrain progenitor markers, reduced expression of progenitor markers Pax6 and Nestin compared to IPO13-/- was evident, concomitant with reduced nuclear localisation/transcriptional function of IPO13 import cargo Pax6. Differentiation of IPO13-/- cells into neurons appeared to be strongly impaired, as evidenced by altered morphology, reduced expression of key neuronal markers, and altered response to the neurotransmitter glutamate. Our findings establish that IPO13 has a key role in ESC neuronal differentiation, in part through the nuclear transport of Pax6.
30

Cai, Qian, Claudia Gerwin e Zu-Hang Sheng. "Syntabulin-mediated anterograde transport of mitochondria along neuronal processes". Journal of Cell Biology 170, n. 6 (12 settembre 2005): 959–69. http://dx.doi.org/10.1083/jcb.200506042.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
In neurons, proper distribution of mitochondria in axons and at synapses is critical for neurotransmission, synaptic plasticity, and axonal outgrowth. However, mechanisms underlying mitochondrial trafficking throughout the long neuronal processes have remained elusive. Here, we report that syntabulin plays a critical role in mitochondrial trafficking in neurons. Syntabulin is a peripheral membrane-associated protein that targets to mitochondria through its carboxyl-terminal tail. Using real-time imaging in living cultured neurons, we demonstrate that a significant fraction of syntabulin colocalizes and co-migrates with mitochondria along neuronal processes. Knockdown of syntabulin expression with targeted small interfering RNA or interference with the syntabulin–kinesin-1 heavy chain interaction reduces mitochondrial density within axonal processes by impairing anterograde movement of mitochondria. These findings collectively suggest that syntabulin acts as a linker molecule that is capable of attaching mitochondrial organelles to the microtubule-based motor kinesin-1, and in turn, contributes to anterograde trafficking of mitochondria to neuronal processes.
31

Williams, Jeffery R., e John A. Payne. "Cation transport by the neuronal K+-Cl− cotransporter KCC2: thermodynamics and kinetics of alternate transport modes". American Journal of Physiology-Cell Physiology 287, n. 4 (ottobre 2004): C919—C931. http://dx.doi.org/10.1152/ajpcell.00005.2004.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Both Cs+ and NH4+ alter neuronal Cl− homeostasis, yet the mechanisms have not been clearly elucidated. We hypothesized that these two cations altered the operation of the neuronal K+-Cl− cotransporter (KCC2). Using exogenously expressed KCC2 protein, we first examined the interaction of cations at the transport site of KCC2 by monitoring furosemide-sensitive 86Rb+ influx as a function of external Rb+ concentration at different fixed external cation concentrations (Na+, Li+, K+, Cs+, and NH4+). Neither Na+ nor Li+ affected furosemide-sensitive 86Rb+ influx, indicating their inability to interact at the cation translocation site of KCC2. As expected for an enzyme that accepts Rb+ and K+ as alternate substrates, K+ was a competitive inhibitor of Rb+ transport by KCC2. Like K+, both Cs+ and NH4+ behaved as competitive inhibitors of Rb+ transport by KCC2, indicating their potential as transport substrates. Using ion chromatography to measure unidirectional Rb+ and Cs+ influxes, we determined that although KCC2 was capable of transporting Cs+, it did so with a lower apparent affinity and maximal velocity compared with Rb+. To assess NH4+ transport by KCC2, we monitored intracellular pH (pHi) with a pH-sensitive fluorescent dye after an NH4+-induced alkaline load. Cells expressing KCC2 protein recovered pHi much more rapidly than untransfected cells, indicating that KCC2 can mediate net NH4+ uptake. Consistent with KCC2-mediated NH4+ transport, pHi recovery in KCC2-expressing cells could be inhibited by furosemide (200 μM) or removal of external [Cl−]. Thermodynamic and kinetic considerations of KCC2 operating in alternate transport modes can explain altered neuronal Cl− homeostasis in the presence of Cs+ and NH4+.
32

ZHOU, CHUYING, e MINEKO KENGAKU. "Possible mechanisms of bidirectional nuclear transport during neuronal migration". BIOCELL 46, n. 11 (2022): 2357–61. http://dx.doi.org/10.32604/biocell.2022.021050.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
33

Sninkura, K., N. Shiina e M. Tokunaga. "Neuronal mRNA transport complex : its ultrastructure and protein constituents". Seibutsu Butsuri 43, supplement (2003): S234. http://dx.doi.org/10.2142/biophys.43.s234_2.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
34

Shinkura, K., N. Shiina, K. Sakata-Sogawa e M. Tokunaga. "1P247 Association of neuronal mRNA transport complex and mitochondria". Seibutsu Butsuri 45, supplement (2005): S93. http://dx.doi.org/10.2142/biophys.45.s93_3.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
35

Moen, Marivi Nabong, Roar Fjær, El Hassan Hamdani, Jon K. Laerdahl, Robin Johansen Menchini, Magnus Dehli Vigeland, Ying Sheng et al. "Pathogenic variants inKCTD7perturb neuronal K+fluxes and glutamine transport". Brain 139, n. 12 (14 ottobre 2016): 3109–20. http://dx.doi.org/10.1093/brain/aww244.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
36

Richardt, Gert, Reinhard Blessing, Markus Haass, Roger Kranzhöfer e Albert Schömig. "Cardiac adenosine release during inhibition of neuronal noradrenaline transport". Japanese Journal of Pharmacology 52 (1990): 110. http://dx.doi.org/10.1016/s0021-5198(19)32991-9.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
37

Tas, Roderick P., Anaël Chazeau, Bas M. C. Cloin, Maaike L. A. Lambers, Casper C. Hoogenraad e Lukas C. Kapitein. "Differentiation between Oppositely Oriented Microtubules Controls Polarized Neuronal Transport". Neuron 96, n. 6 (dicembre 2017): 1264–71. http://dx.doi.org/10.1016/j.neuron.2017.11.018.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
38

Takeda, Sen, Toru Misawa e Kentaro Yoshimura. "Analysis of the intraciliary transport of neuronal primary cilium". Neuroscience Research 68 (gennaio 2010): e124. http://dx.doi.org/10.1016/j.neures.2010.07.2120.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
39

Tsuboi, Daisuke, e Kozo Kaibuchi. "Disrupted-In-Schizoprenia-1 regulates transport of neuronal mRNA". Neuroscience Research 68 (gennaio 2010): e21. http://dx.doi.org/10.1016/j.neures.2010.07.330.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
40

Plenge, Per, e Erling T. Mellerup. "An Affinity-Modulating Site on Neuronal Monoamine Transport Proteins". Pharmacology & Toxicology 80, n. 4 (aprile 1997): 197–201. http://dx.doi.org/10.1111/j.1600-0773.1997.tb00396.x.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
41

Burack, Michelle A., Michael A. Silverman e Gary Banker. "The Role of Selective Transport in Neuronal Protein Sorting". Neuron 26, n. 2 (maggio 2000): 465–72. http://dx.doi.org/10.1016/s0896-6273(00)81178-2.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
42

Kuznetsov, A. V. "Comparison of active transport in neuronal axons and dendrites". Mathematical Biosciences 228, n. 2 (dicembre 2010): 195–202. http://dx.doi.org/10.1016/j.mbs.2010.10.003.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
43

Tomberli, Bruno L., Jarrod Nickel, Mithila Shitut e Mark D. Berry. "Molecular Dynamics of Trace Amine Transport through Neuronal Membranes". Biophysical Journal 98, n. 3 (gennaio 2010): 329a. http://dx.doi.org/10.1016/j.bpj.2009.12.1782.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
44

Hirokawa, Nobutaka, e Reiko Takemura. "Molecular motors in neuronal development, intracellular transport and diseases". Current Opinion in Neurobiology 14, n. 5 (ottobre 2004): 564–73. http://dx.doi.org/10.1016/j.conb.2004.08.011.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
45

Rothstein, Jeffrey D., e Boris Tabakoff. "Glial and neuronal glutamate transport following glutamine synthetase inhibition". Biochemical Pharmacology 34, n. 1 (gennaio 1985): 73–79. http://dx.doi.org/10.1016/0006-2952(85)90102-9.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
46

Hirokawa, Nobutaka. "The neuronal cytoskeleton-morphogenesis, organelle transport, and synaptic transmission". Neuroscience Research Supplements 15 (gennaio 1990): S5. http://dx.doi.org/10.1016/0921-8696(90)90055-8.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
47

Hirokawa, Nobutaka. "The neuronal cytoskeleton-morphogenesis, organelle transport, and synaptic transmission". Neuroscience Research Supplements 11 (gennaio 1990): S5. http://dx.doi.org/10.1016/0921-8696(90)90478-l.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
48

Schiavo, Giampietro, e Moses V. Chao. "Motors, adaptors, and receptors: Key elements of neuronal transport". Journal of Neurobiology 58, n. 2 (2003): 161–63. http://dx.doi.org/10.1002/neu.10325.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
49

Baas, Peter W., e Daniel W. Buster. "Slow axonal transport and the genesis of neuronal morphology". Journal of Neurobiology 58, n. 1 (2003): 3–17. http://dx.doi.org/10.1002/neu.10281.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
50

Dynes, Joseph L., e Oswald Steward. "Dynamics of bidirectional transport ofArc mRNA in neuronal dendrites". Journal of Comparative Neurology 500, n. 3 (2006): 433–47. http://dx.doi.org/10.1002/cne.21189.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Vai alla bibliografia