Indice
Letteratura scientifica selezionata sul tema "Transitions d'écoulement"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Transitions d'écoulement".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Tesi sul tema "Transitions d'écoulement"
Debœuf, Stéphanie. "Transitions et coexistence solide-liquide dans les matériaux granulaires". Paris, Institut de physique du globe, 2005. https://tel.archives-ouvertes.fr/tel-00202523.
Testo completoDeboeuf, Stéphanie. "TRANSITIONS ET COEXISTENCE SOLIDE-LIQUIDE DANS LES MATERIAUX GRANULAIRES". Phd thesis, Institut de physique du globe de paris - IPGP, 2005. http://tel.archives-ouvertes.fr/tel-00202523.
Testo completoL'étude expérimentale de la transition d arrêt d'un empilement après un écoulement de surface met en évidence l'existence de relaxations de durée bien supérieure au temps de relaxation d'un grain sous l'action de son poids. Celle-ci est constituée de phases de relaxation et de réactivations liées à des déplacements corrélés des grains, prises en compte dans un modèle statistique.
L'étude numérique d'un empilement incliné en deçà de l'angle d'avalanche met en évidence l'influence du domaine métastable –au-delà de l'angle de repos– sur ses propriétés hystérétiques au cours de cycles quasi-statiques. Le réseau des contacts faibles est très affecté par le passage dans le domaine métastable. Les corrélations entre micro-structure, contrainte et déformation sont discutées.
Enfin, l'expérience d'un écoulement non confiné sur plan incliné permet d'étudier la loi d'écoulement dans le cas de la coexistence solide-liquide. Les caractéristiques s´electionnées par l'écoulement (épaisseur, largeur, vitesse) évoluent lentement avec le temps. La prise en compte de l'existence d'une couche basale statique permet de retrouver la corrélation entre épaisseur coulante et vitesse, comme pour un écoulement confiné, et de prédire la morphologie des dépôts (présence ou non de levées).
Macadre, Remi. "Étude expérimentale d'émulsions d'eau-dans-huile denses dans un écoulement Couette Plan Annulaire". Electronic Thesis or Diss., Université de Toulouse (2023-....), 2024. http://www.theses.fr/2024TLSEP110.
Testo completoThe subsea extraction of petroleum encompasses the transport of concentrated water-in-oil (W/O) emulsions, stabilized by natural oil-soluble surfactants, like asphaltenes, acids and alcohols, in horizontal pipelines over long distances, up to 50 km. Due to these long residence times, flow configurations are liable to change from fully-stratified to fully-dispersed or vice-versa, including an intermediate stratified-dispersed state. These transitions are driven by processes such as sedimentation, shear-induced migration and coalescence. These processes are influenced by liquid and interface properties, dispersed-phase concentration, flow regimes, and drop size. This Phd focuses on horizontal flows of concentrated W/O emulsions.Unique experimental methods and apparatuses are designed in order to locally visualize the flow of such emulsions. By introducing various components in water and in an alkane oil, refractive index matching is achieved between both phases, while controlling the density difference. The control of density difference allows for the study of the interplay between buoyancy and hydrodynamic forces, which is primordial to study particle migration in dispersed-phase flows. Velocity profiles are obtained with Particle Image Velocimetry by introducing fluorescent particles in the oil phase while phase topologies are obtained with adding a fluorophore inside the oil phase as well.Static-bed experiments are carried out in a static-bed apparatus, providing results regarding the metastability of W/O emulsions over long-time periods, where only gravity controls the coalescence process. Shear-flow experiments are performed in an Annular Plane Couette device, representing a plane Couette curved around itself. This geometry is selected for its periodicity and its ability to present a vertical plane of shear in the same direction as gravity.By studying the transition from stratified-dispersed to fully-dispersed flows, different regimes have been highlighted. These regimes are : the bed-expansion, the wavy, the drop-ejection and the fully-dispersed regime. Starting from an emulsion bed left at rest at the bottom of the APC channel, the rotation speed of the top annular lid is increase, up until the fully-dispersed regime. At low shear rates, the emulsion bed expands until it reaches an equilibrium height. At medium shear rates, the emulsion bed is destabilized and emulsion waves are formed along the azimuthal direction, which statistics have been computed with a wave detection algorithm. At high shear rates, the waves are highly deformed, isolating water droplets, surfing atop of waves, from their emulsion cluster and its high viscosity. This leads to their ejection in breaking waves, which gradually depletes the emulsion bed. Finally, the fully-dispersed regime is reached when the emulsion bed has dissapeared and the entire channel is filled with water droplets. In this regime, the migration of droplets is controlled by shear-induced diffusion. The transitions between each regime are shown to be dependent on a single critical Froude number, from low values to high values of this dimensionless parameter.The metastability of these concentrated W/O emulsions are also studied by comparing the results between static-flow and shear-flow experiments. These results showed that in static conditions, the W/O emulsion is highly metastable (no coalescence over few months of observations), while in shear flows, the same W/O layer coalesced up until a fully-continuous layer of water phase is formed. This may be explained by the unique characteristics of such emulsions, which are stabilized by multilayer of surfactant micelles, and these multilayers are pierced by the shear rate.This knowledge will help to build new transport models for accurate sizing of industrial devices dealing with two-phase flow of emulsions (pumps, mixers, phase separators …)
Félix, Gwenaëlle. "Ecoulements de milieux granulaires en tambour tournant. Étude de quelques transitions de régime. Application à la ségrégation". Phd thesis, Institut National Polytechnique de Lorraine - INPL, 2002. http://tel.archives-ouvertes.fr/tel-00089234.
Testo completoMedelfef, Abdessamed. "Transitions d'écoulements en cavité chauffée latéralement : application à la croissance cristalline". Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEC018/document.
Testo completoHydrodynamic instabilities in laterally heated cavities play an important role in some material processing techniques such as the horizontal Bridgman process. Indeed, the fluid (liquid metal to be solidified) is the seat of a thermoconvective circulation due to the existence of a horizontal temperature gradient which is likely to become unsteady via oscillatory instabilities. The knowledge and the control of these instabilities are thus essential in order to be able to improve the quality of the crystals obtained by this technique. In this thesis, we are first interested in the instabilities of the convective circulation in a three-dimensional cavity of dimensions 4×2×1 (length × width × height). Thanks to the numerical continuation techniques, we were able to obtain the stationary and oscillatory solutions, as well as their stability, until the appearance of the quasi-periodicity according to the Grashof number Gr and for a Prandtl number Pr ranging from 0 to 0.025.Then, the effects induced by a rotation of the cavity around the vertical axis parallel to gravity (for a possible control of the instabilities) are studied and a one-dimensional model developed during this thesis was first considered. This analytical model, although simplified, is in very good agreement with the observations of the atmospheric flows (deviation of the fluid masses towards the right of the component of the dominant velocity and thermal winds). The linear stability of this flow as well as an energy analysis at the thresholds are then performed as a function of the rotation rate given by the Taylor number Ta and the Grashof number Gr for a Prandtl number Pr ranging from 0 to 10. Through this model, we have been able to show that the rotation has a stabilizing effect on this type of flow.We finally focused on the effects of this type of rotation on the steady fully threedimensional flow observed in the cavity 4×2×1 at low Grashof numbers.We have highlighted two flow regimes: a regime dominated by convection where the fluid circulation, deviated by the rotation, occurs in the diagonal of the cavity, and a second regime dominated by rotation where the fluid circulation is concentrated in the so-called Ekman and Stewartson boundary layers. A very good agreement is observed between the simplified analytical model and the three-dimensional numerical simulation
Medelfef, Abdessamed. "Transitions d'écoulements en cavité chauffée latéralement : application à la croissance cristalline". Electronic Thesis or Diss., Lyon, 2019. http://www.theses.fr/2019LYSEC018.
Testo completoHydrodynamic instabilities in laterally heated cavities play an important role in some material processing techniques such as the horizontal Bridgman process. Indeed, the fluid (liquid metal to be solidified) is the seat of a thermoconvective circulation due to the existence of a horizontal temperature gradient which is likely to become unsteady via oscillatory instabilities. The knowledge and the control of these instabilities are thus essential in order to be able to improve the quality of the crystals obtained by this technique. In this thesis, we are first interested in the instabilities of the convective circulation in a three-dimensional cavity of dimensions 4×2×1 (length × width × height). Thanks to the numerical continuation techniques, we were able to obtain the stationary and oscillatory solutions, as well as their stability, until the appearance of the quasi-periodicity according to the Grashof number Gr and for a Prandtl number Pr ranging from 0 to 0.025.Then, the effects induced by a rotation of the cavity around the vertical axis parallel to gravity (for a possible control of the instabilities) are studied and a one-dimensional model developed during this thesis was first considered. This analytical model, although simplified, is in very good agreement with the observations of the atmospheric flows (deviation of the fluid masses towards the right of the component of the dominant velocity and thermal winds). The linear stability of this flow as well as an energy analysis at the thresholds are then performed as a function of the rotation rate given by the Taylor number Ta and the Grashof number Gr for a Prandtl number Pr ranging from 0 to 10. Through this model, we have been able to show that the rotation has a stabilizing effect on this type of flow.We finally focused on the effects of this type of rotation on the steady fully threedimensional flow observed in the cavity 4×2×1 at low Grashof numbers.We have highlighted two flow regimes: a regime dominated by convection where the fluid circulation, deviated by the rotation, occurs in the diagonal of the cavity, and a second regime dominated by rotation where the fluid circulation is concentrated in the so-called Ekman and Stewartson boundary layers. A very good agreement is observed between the simplified analytical model and the three-dimensional numerical simulation
Liu, Chen. "Dynamique critique à la transition d'écoulement et comportements de fluage des systèmes amorphes : modélisation mésoscopique". Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAY066/document.
Testo completoAmorphous systems deep blow the glass transition, as well as colloidal glasses at high packing fractions,concentrated emulsions, foam systems, etc. exhibit divergent microscopic relaxation time scales and flowonly upon a large enough external loading. This dynamical phase transition of amorphous systems fromthe apparent solid state to the apparent liquid state mediated by the external loading, is called theyielding transition. This transition is studied throughout this thesis by a mesoscopic modeling approach,specifically versions of the so-called elasto-plastic model.After introducing a general background of the glass transition and experimental systems, that are thetarget of the elasto-plastic model description, a formulation of the elasto-plastic model, slightly differentfrom the conventional ones used in the literature, is introduced for incorporating both the shear ratecontrol and the stress control protocols. It is also shown that the mean-field Hebraud-Lequeux model canbe derived from the spatially resolved elasto-plastic model by assuming some approximations.Using the shear rate control protocol, the yielding transition is firstly probed by studying the shearrate dependence of the avalanche statistics close to criticality. A crossover from a non mean-field behaviorto an apparent mean-field behavior with respect to an increasing shear rate is evidenced. Scaling laws in thezero shear rate limit, support the idea that the yielding transition belongs to a non mean-field universalityclass of a dynamical phase transition. The dependence of the symmetry of the average shape of the stressdrops on the stress drop duration, the system size and the shear rate, leads to the interpretation that stressdrops at finite shear rates result from the superposition of individual avalanches possessing a cooperativelength and time scale.By studying the macroscopic stress fluctuation, the cooperative length scale l_c is identified as thecrossover size below which the scaling relation with the system size 1/L^d implied by the central limittheorem breaks down. Further a saturation time scale T_c can be defined in the analysis of the timeseries of macroscopic plastic strain rate. Below this time scale one observes the manifestation of Browniandynamics. The saturation time for systems of sizes smaller than the cooperative length l_c scales withthe system size as a power law T_c~(l_c)^z, which can be interpreted as the scaling relation between thecooperative time and the cooperative length of individual avalanches.Further using the stress controlled protocol, the yielding transition is studied by simulating typical creep experiments of the amorphous systems. The mesoscopic models (the elasto-plastic model aswell as the mean-field Hébraud-Lequeux model) are shown to be capable to reproduce the response ofthe macroscopic shear rate to an imposed stress slightly above the yielding point in qualitatively goodagreement with several experiments. Within the mesoscopic modeling approach, the results reveal thatthe creep behavior depends strongly on the initial condition of the amorphous system submitted to creepexperiments
Bilger, Nicolas. "Étude micro-mécanique de l'effet de la présence d'amas d'inclusions sur la transition fragile-ductile d'aciers nucléaires". Phd thesis, Ecole Polytechnique X, 2003. http://pastel.archives-ouvertes.fr/pastel-00001070.
Testo completoLaurent, Célia. "Étude d'écoulements transitionnels et hors équilibre par des approches DNS et RANS". Phd thesis, Paris, ENSAM, 2012. http://pastel.archives-ouvertes.fr/pastel-00834850.
Testo completoSoualmia, Amel. "Structure et modélisation d'écoulements internes de gaz et de liquide à phases séparées". Toulouse, INPT, 1993. http://www.theses.fr/1993INPT132H.
Testo completo