Letteratura scientifica selezionata sul tema "Topological physics"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Topological physics".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Topological physics"
Ota, Yasutomo, Kenta Takata, Tomoki Ozawa, Alberto Amo, Zhetao Jia, Boubacar Kante, Masaya Notomi, Yasuhiko Arakawa e Satoshi Iwamoto. "Active topological photonics". Nanophotonics 9, n. 3 (28 gennaio 2020): 547–67. http://dx.doi.org/10.1515/nanoph-2019-0376.
Testo completoCho, Y. M., Seung Hun Oh e Pengming Zhang. "Knots in physics". International Journal of Modern Physics A 33, n. 07 (8 marzo 2018): 1830006. http://dx.doi.org/10.1142/s0217751x18300065.
Testo completoKim, Ki-Seok, e Akihiro Tanaka. "Emergent gauge fields and their nonperturbative effects in correlated electrons". Modern Physics Letters B 29, n. 16 (20 giugno 2015): 1540054. http://dx.doi.org/10.1142/s0217984915400540.
Testo completoHafezi, Mohammad, e Jacob M. Taylor. "Topological physics with light". Physics Today 67, n. 5 (maggio 2014): 68–69. http://dx.doi.org/10.1063/pt.3.2394.
Testo completoShuo, LIU, ZHANG Shuang e CUI Tie-jun. "Topological circuit: a playground for exotic topological physics". Chinese Optics 14, n. 4 (2021): 736–53. http://dx.doi.org/10.37188/co.2021-0095.
Testo completoShen, Yuanyuan, Shengguo Guan e Chunyin Qiu. "Topological valley transport of spoof surface acoustic waves". Journal of Applied Physics 133, n. 11 (21 marzo 2023): 114305. http://dx.doi.org/10.1063/5.0137591.
Testo completoHAN, Jung Hoon. "Solid State Physics, Condensed Matter Physics, and Topological Physics!" Physics and High Technology 25, n. 12 (30 dicembre 2016): 2–6. http://dx.doi.org/10.3938/phit.25.060.
Testo completoNovitsky, Denis V., e Andrey V. Novitsky. "Bound States in the Continuum versus Fano Resonances: Topological Argument". Photonics 9, n. 11 (20 novembre 2022): 880. http://dx.doi.org/10.3390/photonics9110880.
Testo completoLiu, Shuo, Wenlong Gao, Qian Zhang, Shaojie Ma, Lei Zhang, Changxu Liu, Yuan Jiang Xiang, Tie Jun Cui e Shuang Zhang. "Topologically Protected Edge State in Two-Dimensional Su–Schrieffer–Heeger Circuit". Research 2019 (5 febbraio 2019): 1–8. http://dx.doi.org/10.34133/2019/8609875.
Testo completoLiu, Shuo, Wenlong Gao, Qian Zhang, Shaojie Ma, Lei Zhang, Changxu Liu, Yuan Jiang Xiang, Tie Jun Cui e Shuang Zhang. "Topologically Protected Edge State in Two-Dimensional Su–Schrieffer–Heeger Circuit". Research 2019 (5 febbraio 2019): 1–8. http://dx.doi.org/10.1155/2019/8609875.
Testo completoTesi sul tema "Topological physics"
Tapio, O. (Ossi). "Topological defects in cosmology". Master's thesis, University of Oulu, 2013. http://urn.fi/URN:NBN:fi:oulu-201302121030.
Testo completoMoore, Christopher Paul. "Tunneling Transport Phenomena in Topological Systems". Thesis, Clemson University, 2019. http://pqdtopen.proquest.com/#viewpdf?dispub=13420479.
Testo completoOriginally proposed in high energy physics as particles, which are their own anti-particles, Majorana fermions have never been observed in experiments. However, possible signatures of their condensed matter analog, zero energy, charge neutral, quasiparticle excitations, known as Majorana zero modes (MZMs), are beginning to emerge in experimental data. The primary method of engineering topological superconductors capable of supporting MZMs is through proximity-coupled semiconductor nanowires with strong Rashba spin-orbit coupling and an applied magnetic field. Recent tunneling transport experiments involving these materials, known as semiconductor-superconductor heterostructures, were capable for the first time of measuring quantized zero bias conductance plateaus, which are robust over a range of control parameters, long believed to be the smoking gun signature of the existence of MZMs. The possibility of observing Majorana zero modes has garnered great excitement within the field due to the fact that MZMs are predicted to obey non-Abelian quantum statistics and therefore are the leading candidates for the creation of qubits, the building blocks of a topological quantum computer. In this work, we first give a brief introduction to Majorana zero modes and topological quantum computing (TQC). We emphasize the importance that having a true topologically protected state, which is not dependent on local degrees of freedom, has with regard to non-Abelian braiding calculations. We then introduce the concept of partially separated Andreev bound states (ps-ABSs) as zero energy states whose constituent Majorana bound states (MBSs) are spatially separated on the order of the Majorana decay length. Next, through numerical calculation, we show that the robust 2 e2/h zero bias conductance plateaus recently measured and claimed by many in the community to be evidence of having observed MZMs for the first time, can be identically created due to the existence of ps-ABSs. We use these results to claim that all localized tunneling experiments, which have been until now the main way researchers have tried to measure MZMs, have ceased to be useful. Finally, we outline a two-terminal tunneling experiment, which we believe to be relatively straight forward to implement and fully capable of distinguishing between ps-ABSs and true topologically protected MZMs.
Timothy, H. Hsieh Timothy (Timothy Hwa-wei). "Topological materials and quantum entanglement". Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/103228.
Testo completoCataloged from PDF version of thesis.
Includes bibliographical references (pages 83-91).
As the title implies, this thesis consists of two main topics: materials which realize topological phases of matter and applications of the concept of entanglement in understanding topological phases and their transitions. The first part will focus on a particular class of materials called topological crystalline insulators (TCI), which are bulk insulators with metallic boundary states protected by crystal mirror symmetries. The realization of TCIs in the SnTe class of materials and the anti-perovskite family will be described. The second part will focus on using entanglement notions to probe a topological phase transition, based on a single topological wavefunction. This is achieved by performing extensive partitions of the wavefunction, such as a checkerboard partition. Implementing this technique in one dimension naturally involves the use of tensor networks, which will be reviewed and then utilized.
by Timothy H. Hsieh.
Ph. D.
Chess, Jordan J. "Mapping Topological Magnetization and Magnetic Skyrmions". Thesis, University of Oregon, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10684160.
Testo completoA 2014 study by the US Department of Energy conducted at Lawrence Berkeley National Laboratory estimated that U.S. data centers consumed 70 billion kWh of electricity. This represents about 1.8% of the total U.S. electricity consumption. Putting this in perspective 70 billion kWh of electricity is the equivalent of roughly 8 big nuclear reactors, or around double the nation's solar panel output. Developing new memory technologies capable of reducing this power consumption would be greatly beneficial as our demand for connectivity increases in the future. One newly emerging candidate for an information carrier in low power memory devices is the magnetic skyrmion. This magnetic texture is characterized by its specific non-trivial topology, giving it particle-like characteristics. Recent experimental work has shown that these skyrmions can be stabilized at room temperature and moved with extremely low electrical current densities. This rapidly developing field requires new measurement techniques capable of determining the topology of these textures at greater speed than previous approaches. In this dissertation, I give a brief introduction to the magnetic structures found in Fe/Gd multilayered systems. I then present newly developed techniques that streamline the analysis of Lorentz Transmission Electron Microscopy (LTEM) data. These techniques are then applied to further the understanding of the magnetic properties of these Fe/Gd based multilayered systems.
This dissertation includes previously published and unpublished co-authored material.
Damodaran, K. "Topological defects in cosmology and nuclear physics". Thesis, University of Cambridge, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.598261.
Testo completoYang, Biao. "Photonic topological metamaterials". Thesis, University of Birmingham, 2018. http://etheses.bham.ac.uk//id/eprint/8103/.
Testo completoLu, Fuyan. "Topological Phases with Crystalline Symmetries". The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1524790822570583.
Testo completoLifschytz, Gilad. "Quantum gravity and topological field theory". Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/33529.
Testo completoTang, Evelyn (Evelyn May Yin). "Topological phases in narrow-band systems". Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/103220.
Testo completoCataloged from PDF version of thesis.
Includes bibliographical references (pages 64-72).
I discuss several novel topological phases in correlated electron systems, realized through spin-orbit interactions and lattice effects especially narrow-band systems. The first realizes the fractional quantum Hall effect using geometric frustration and ferromagnetism to obtain a nearly flat band with a large bandgap and non-zero Chern number. This system can support this effect at high temperatures upon partial filling of the flat band. The second proposal builds upon this system: as the ground state is a fractional quantum Hall state, excitations of this state are anyons when there is an incommensurate filling. The underlying lattice allows access to a new regime in which the anyon gas can form a charged superfluid, including states with intrinsic topological order or that similar to a BCS-type state. The third proposal studies topological crystalline insulators and strain as an effective gauge field on the surface state Dirac fermions. The zero-energy Landau orbitals form a flat band where the high density of states gives rise to the interface superconductivity observed in IV-VI semiconductor multilayers at high temperatures, with non-BCS behavior. A discussion of superconductivity in flat band systems concludes and is contrasted with classic results for a typical electron gas. This work closely parallels that in references [1, 2, 3].
by Evelyn Tang.
Ph. D.
Wu, Hao. "Excitations in Topological Superfluids and Superconductors". Thesis, Northwestern University, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10259423.
Testo completoIn this thesis I present the theoretical work on Fermionic surface states, and %the bulk Bosonic collective excitations in topological superfluids and superconductors. Broken symmetries %Bulk-edge correspondence in topological condensed matter systems have implications for the spectrum of Fermionic excitations confined on surfaces or topological defects. (Abstract shortened by ProQuest.)
Libri sul tema "Topological physics"
Basu, Saurabh. Topological Phases in Condensed Matter Physics. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-5321-9.
Testo completoHollands, Lotte. Topological strings and quantum curves. Amsterdam: Amsterdam University Press, 2009.
Cerca il testo completoAfanasiev, G. N. Topological Effects in Quantum Mechanics. Dordrecht: Springer Netherlands, 1999.
Cerca il testo completoAnne-Christine, Davis, Brandenberger Robert Hans, North Atlantic Treaty Organization. Scientific Affairs Division. e NATO Advanced Study Institute on Formation and Interactions of Topological Defects (1994 : Cambridge, England), a cura di. Formation and interactions of topological defects. New York: Plenum Press, 1995.
Cerca il testo completoservice), SpringerLink (Online, a cura di. Differentiable Manifolds: A Theoretical Physics Approach. Boston: Springer Science+Business Media, LLC, 2012.
Cerca il testo completoLaboratory, Fermi National Accelerator, e United States. National Aeronautics and Space Administration., a cura di. The formation of topological defects in phase transitions. Batavia, IL: Fermi National Accelerator Laboratory, 1989.
Cerca il testo completoGiuseppe, Morandi. Quantum Hall effect: Topological problems in condensed-matter physics. Napoli: Bibliopolis, 1988.
Cerca il testo completoShen, Shun-Qing. Topological Insulators: Dirac Equation in Condensed Matters. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Cerca il testo completoDavis, Anne-Christine. Formation and Interactions of Topological Defects: Proceedings of a NATO Advanced Study Institute on Formation and Interactions of Topological Defects, held August 22-September 2, 1994, in Cambridge, England. Boston, MA: Springer US, 1995.
Cerca il testo completoGrigorʹevich, Barʹi͡a︡khtar Viktor, a cura di. Dynamics of topological magnetic solitons: Experiment and theory. Berlin: Springer-Verlag, 1994.
Cerca il testo completoCapitoli di libri sul tema "Topological physics"
Baus, Marc, e Carlos F. Tejero. "Topological Defects and Topological Phase Transitions". In Equilibrium Statistical Physics, 323–71. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-75432-7_12.
Testo completoBlanchard, Philippe, e Erwin Brüning. "Topological Aspects". In Mathematical Methods in Physics, 235–45. Boston, MA: Birkhäuser Boston, 2003. http://dx.doi.org/10.1007/978-1-4612-0049-9_18.
Testo completoBlanchard, Philippe, e Erwin Brüning. "Topological Aspects". In Mathematical Methods in Physics, 265–76. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14045-2_19.
Testo completoMonastyrsky, Michael. "Topological Particles". In Riemann, Topology, and Physics, 145–56. Boston, MA: Birkhäuser Boston, 1999. http://dx.doi.org/10.1007/978-0-8176-4779-7_14.
Testo completoMonastyrsky, Michael. "Topological Structures". In Riemann, Topology, and Physics, 95–106. Boston, MA: Birkhäuser Boston, 1999. http://dx.doi.org/10.1007/978-0-8176-4779-7_9.
Testo completoMonastyrsky, Michael. "Topological Particles". In Riemann, Topology, and Physics, 125–29. Boston, MA: Birkhäuser Boston, 1987. http://dx.doi.org/10.1007/978-1-4899-3514-4_14.
Testo completoMonastyrsky, Michael. "Topological Structures". In Riemann, Topology, and Physics, 76–87. Boston, MA: Birkhäuser Boston, 1987. http://dx.doi.org/10.1007/978-1-4899-3514-4_9.
Testo completoJohnson, P. D. "Dirac cones and topological states: topological insulators". In Physics of Solid Surfaces, 523–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-53908-8_127.
Testo completoKouneiher, Joseph. "Topological Foundations of Physics". In The Map and the Territory, 245–71. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72478-2_13.
Testo completoHafezi, Mohammad, e Jacob Taylor. "Topological Physics with Photons". In Quantum Science and Technology, 71–89. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52025-4_4.
Testo completoAtti di convegni sul tema "Topological physics"
Kriisa, Annika, R. G. Mani e W. Wegscheider. "Topological Hall insulator". In THE PHYSICS OF SEMICONDUCTORS: Proceedings of the 31st International Conference on the Physics of Semiconductors (ICPS) 2012. AIP, 2013. http://dx.doi.org/10.1063/1.4848352.
Testo completoSoljacic, Marin. "AI for photonics and topological physics". In Active Photonic Platforms (APP) 2023, a cura di Ganapathi S. Subramania e Stavroula Foteinopoulou. SPIE, 2023. http://dx.doi.org/10.1117/12.2678581.
Testo completoAmaral, R. L. P. G. "Mappings From Models Presenting Topological Mass Mechanisms to Purely Topological Models". In IX HADRON PHYSICS AND VII RELATIVISTIC ASPECTS OF NUCLEAR PHYSICS: A Joint Meeting on QCD and QCP. AIP, 2004. http://dx.doi.org/10.1063/1.1843610.
Testo completoWang, Jing, Xi Chen, Bang-Fen Zhu e Shou-Cheng Zhang. "Topological p-n junction". In THE PHYSICS OF SEMICONDUCTORS: Proceedings of the 31st International Conference on the Physics of Semiconductors (ICPS) 2012. AIP, 2013. http://dx.doi.org/10.1063/1.4848348.
Testo completoThiang, Guo Chuan. "T-duality and K-theory: a view from condensed matter physics". In Workshop on Strings, Membranes and Topological Field Theory. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813144613_0007.
Testo completoNIEH, H. T. "A TORSIONAL TOPOLOGICAL INVARIANT". In Statistical Physics, High Energy, Condensed Matter and Mathematical Physics - The Conference in Honor of C. N. Yang'S 85th Birthday. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812794185_0003.
Testo completoJackiw, R. "Topological structures in QCD at high T". In CAM-94 Physics meeting. AIP, 1995. http://dx.doi.org/10.1063/1.48782.
Testo completoYukalov, V. I. "Topological Coherent Modes in Trapped Bose Gas". In ATOMIC PHYSICS 19: XIX International Conference on Atomic Physics; ICAP 2004. AIP, 2005. http://dx.doi.org/10.1063/1.1928856.
Testo completoIwamoto, Satoshi, e Yasutomo Ota. "Exploiting Photonic Topology in Semiconductor Nanophotonics". In JSAP-Optica Joint Symposia. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/jsapo.2023.19p_a602_1.
Testo completoKoushik, R., Matthias Baenninger, Vijay Narayan, Subroto Mukerjee, Michael Pepper, Ian Farrer, David A. Ritchie e Arindam Ghosh. "Topological excitations in semiconductor heterostructures". In THE PHYSICS OF SEMICONDUCTORS: Proceedings of the 31st International Conference on the Physics of Semiconductors (ICPS) 2012. AIP, 2013. http://dx.doi.org/10.1063/1.4848387.
Testo completoRapporti di organizzazioni sul tema "Topological physics"
Guha, Supratik, H. S. Philip Wong, Jean Anne Incorvia e Srabanti Chowdhury. Future Directions Workshop: Materials, Processes, and R&D Challenges in Microelectronics. Defense Technical Information Center, giugno 2022. http://dx.doi.org/10.21236/ad1188476.
Testo completoYan, Yujie, e Jerome F. Hajjar. Automated Damage Assessment and Structural Modeling of Bridges with Visual Sensing Technology. Northeastern University, maggio 2021. http://dx.doi.org/10.17760/d20410114.
Testo completo