Letteratura scientifica selezionata sul tema "Tire-Wheel assembly"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Tire-Wheel assembly".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Tire-Wheel assembly"
Rhyne, T. B., R. Gall e L. Y. Chang. "Influence of Rim Run-Out on the Nonuniformity of Tire-Wheel Assemblies". Tire Science and Technology 22, n. 2 (1 aprile 1994): 99–120. http://dx.doi.org/10.2346/1.2139538.
Testo completoZhou, Yaoqun, Frank Gauterin, Hans-Joachim Unrau e Michael Frey. "Experimental Study of Tire-Wheel-Suspension Dynamics in Rolling over Cleat and Abrupt Braking Conditions". Tire Science and Technology 43, n. 1 (1 aprile 2015): 42–71. http://dx.doi.org/10.2346/tire.15.430102.
Testo completoNi, E. J. "A Mathematical Model for Tire/Wheel Assembly Balance". Tire Science and Technology 21, n. 4 (1 ottobre 1993): 220–31. http://dx.doi.org/10.2346/1.2139530.
Testo completoYu, H. J., e H. Aboutorabi. "Dynamics of Tire, Wheel, and Suspension Assembly". Tire Science and Technology 29, n. 2 (1 aprile 2001): 66–78. http://dx.doi.org/10.2346/1.2135232.
Testo completoSchuring, D. J. "Uniformity of Tire-Wheel Assemblies". Tire Science and Technology 19, n. 4 (1 ottobre 1991): 213–36. http://dx.doi.org/10.2346/1.2141716.
Testo completoZhao, Wei, Xiandong Liu, Yingchun Shan e Tian He. "Design and simulation of Helmholtz resonator assembly used to attenuate tire acoustic cavity resonance noise". INTER-NOISE and NOISE-CON Congress and Conference Proceedings 263, n. 6 (1 agosto 2021): 942–53. http://dx.doi.org/10.3397/in-2021-1706.
Testo completoTanno, Atsushi. "Tire wheel assembly and noise-reducing device". Journal of the Acoustical Society of America 128, n. 4 (2010): 2254. http://dx.doi.org/10.1121/1.3500770.
Testo completoDohrmann, C. R. "DYNAMICS OF A TIRE–WHEEL–SUSPENSION ASSEMBLY". Journal of Sound and Vibration 210, n. 5 (marzo 1998): 627–42. http://dx.doi.org/10.1006/jsvi.1997.1332.
Testo completoVallim, Matheus de B., José M. C. Dos Santos e Argemiro L. A. Costa. "Motorcycle Analytical Modeling Including Tire–Wheel Nonuniformities for Ride Comfort Analysis". Tire Science and Technology 45, n. 2 (1 aprile 2017): 101–20. http://dx.doi.org/10.2346/tire.17.450202.
Testo completoIizuka, Hideo, Nobuhiro Ide, Katsutoshi Nakatsu, Hiroshi Yoshimoto e Kazuo Sato. "Odd-Mode-Excited Tire-Wheel Assembly for Tire Pressure Monitoring Systems". IEEE Transactions on Antennas and Propagation 60, n. 4 (aprile 2012): 2063–70. http://dx.doi.org/10.1109/tap.2012.2186246.
Testo completoTesi sul tema "Tire-Wheel assembly"
Carvalho, Antoine. "Contrôle actif de l'ensemble roue-pneu pour la réduction de la transmission vibratoire solidienne". Electronic Thesis or Diss., Lyon, INSA, 2024. http://www.theses.fr/2024ISAL0073.
Testo completoThe impact of noise on humans is increasingly at the heart of health issues. In a context of intense industrial competitiveness, these issues lie at the heart of the automotive sector, a truth that also applies to the tire industry. With the rise of electric vehicles, the rolling noise previously masked by other sources of vehicle-related noise pollution poses a real problem for passenger comfort. Vehicle structure, tires, and suspension systems can attenuate some of the undesirable effects of tire-road contact at high and low frequencies. However, few technical solutions have been deployed to address the vibratory phenomena transmitted by tire-wheel assemblies operating between 200 and 500 Hz. One reason for this, these tire-wheel assemblies present complex dynamics dependent on multiple factors, such as their internal pressure, loads, and rotation speed. This thesis is structured around three axes: a deeper understanding of the dynamic behavior of tire-wheel assemblies, the development and control of a set of experimental devices, and the realization of a system and a control law to reduce the forces transmitted in the hubs. Work carried out on four different experimental setups enabled us to minimize the uncertainties associated with the evolving dynamics of the structure to be controlled, thereby allowing for a better definition of the proposed solution's field of action. Based on these results, a network of piezoelectric transducers, used as sensors and actuators, has been proposed. Various robust control solutions have been suggested, including one that combines active control and a spatial modal filter, and another that exploits a sliding-mode controller. These solutions were first studied numerically using models based on experimental data, and then tested on the full-scale structure. In parallel with this work, robustness studies of the proposed solutions were carried out. The most advanced control system was finally tested under realistic operating conditions, involving loading, contact with the tire similar to that obtained with the roadway, and rotation of the assembly. Attenuation of the two target modes was achieved for different rotation speeds
Atti di convegni sul tema "Tire-Wheel assembly"
Yoon, Youngsam, Taesuk Lee, Hyungjoo Kim, Jaekil Lee e Kyuho Sim. "Development and Simulation Validation of a Wheel/Tire Selective-Matching Algorithm Considering an Error Function of Wheel Runout Measuring Equipment". In WCX SAE World Congress Experience. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2024. http://dx.doi.org/10.4271/2024-01-2651.
Testo completoChauhan, Mohitkumar R., Girish Kotwal e Abhijeet Majge. "Numerical Simulation of Tire and Wheel Assembly Impact Test Using Finite Element Method". In Symposium on International Automotive Technology 2015. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2015. http://dx.doi.org/10.4271/2015-26-0186.
Testo completoRath, Shubham, Alexandrina Untaroiu e Gen Fu. "Effects of Tire Attributes on the Aerodynamic Performance of a Generic Car-Tire Assembly". In ASME 2022 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/fedsm2022-87705.
Testo completoBourdieu, Tomas, Dominic Jekel e Christoph Schöner. "Objective condensation of wheel-tire assemblies in finite element models for creep groan simulation". In EuroBrake 2022. FISITA, 2022. http://dx.doi.org/10.46720/eb2022-fbr-001.
Testo completoPalanivelu, Sakthivel, e Krishna Kumar Ramarathnam. "Synthesis of Structure Borne Vehicle Interior Noise due to Tire/Road Interaction". In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-46083.
Testo completoSung, Shung H., Donald J. Nefske, Douglas A. Feldmaier e Spencer J. Doggett. "Development and Experimental Evaluation of a Vehicle Rear Suspension Vibration Model". In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-39148.
Testo completode Falco, Domenico, Giandomenico Di Massa e Stefano Pagano. "Wheel Shimmy Experimental Investigation". In ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/esda2012-82282.
Testo completoFerrone, Christopher W. "Heavy Truck Hub and Wheel-Off Accidents: A Mechanical Analysis". In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-41410.
Testo completoKhameneifar, Farbod, e Siamak Arzanpour. "Energy Harvesting From Pneumatic Tires Using Piezoelectric Transducers". In ASME 2008 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2008. http://dx.doi.org/10.1115/smasis2008-426.
Testo completoCapouellez, James, Abraham Pannikottu e Jon Gerhardt. "SURVIVABILITY ENHANCED RUN-FLAT VARIABLE FOOTPRINT TIRES". In 2024 NDIA Michigan Chapter Ground Vehicle Systems Engineering and Technology Symposium. 2101 Wilson Blvd, Suite 700, Arlington, VA 22201, United States: National Defense Industrial Association, 2024. http://dx.doi.org/10.4271/2024-01-3196.
Testo completo