Letteratura scientifica selezionata sul tema "THz emission sources"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "THz emission sources".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "THz emission sources"
Andronov, A. A., A. V. Ikonnikov, K. V. Maremianin, V. I. Pozdnjakova, Y. N. Nozdrin, A. A. Marmalyuk, A. A. Padalitsa et al. "THz stimulated emission from simple superlattice in positive differential conductivity region". Физика и техника полупроводников 52, n. 4 (2018): 463. http://dx.doi.org/10.21883/ftp.2018.04.45812.01.
Testo completoWang, Maorong, Yifan Zhang, Leilei Guo, Mengqi Lv, Peng Wang e Xia Wang. "Spintronics Based Terahertz Sources". Crystals 12, n. 11 (18 novembre 2022): 1661. http://dx.doi.org/10.3390/cryst12111661.
Testo completoHu, Qing. "Generation of Terahertz Emission Based on Intersubband Transitions". International Journal of High Speed Electronics and Systems 12, n. 04 (dicembre 2002): 995–1024. http://dx.doi.org/10.1142/s0129156402001897.
Testo completoWang, Suyun. "Terahertz Emission Modeling of Lunar Regolith". Remote Sensing 16, n. 21 (30 ottobre 2024): 4037. http://dx.doi.org/10.3390/rs16214037.
Testo completoMinkevičius, Linas, Liang Qi, Agnieszka Siemion, Domas Jokubauskis, Aleksander Sešek, Andrej Švigelj, Janez Trontelj, Dalius Seliuta, Irmantas Kašalynas e Gintaras Valušis. "Titanium-Based Microbolometers: Control of Spatial Profile of Terahertz Emission in Weak Power Sources". Applied Sciences 10, n. 10 (14 maggio 2020): 3400. http://dx.doi.org/10.3390/app10103400.
Testo completoChen, Yuxuan, Yuhang He, Liyuan Liu, Zhen Tian, Jianming Dai e Xi-Cheng Zhang. "Backward THz Emission from Two-Color Laser Field-Induced Air Plasma Filament". Sensors 23, n. 10 (10 maggio 2023): 4630. http://dx.doi.org/10.3390/s23104630.
Testo completoHuang, Hsin-hui, Takeshi Nagashima, Wei-hung Hsu, Saulius Juodkazis e Koji Hatanaka. "Dual THz Wave and X-ray Generation from a Water Film under Femtosecond Laser Excitation". Nanomaterials 8, n. 7 (13 luglio 2018): 523. http://dx.doi.org/10.3390/nano8070523.
Testo completoHawecker, J., E. Rongione, A. Markou, S. Krishnia, F. Godel, S. Collin, R. Lebrun et al. "Spintronic THz emitters based on transition metals and semi-metals/Pt multilayers". Applied Physics Letters 120, n. 12 (21 marzo 2022): 122406. http://dx.doi.org/10.1063/5.0079955.
Testo completoLange, Simon Jappe, Matthias C. Hoffmann e Peter Uhd Jepsen. "Lightwave-driven electron emission for polarity-sensitive terahertz beam profiling". APL Photonics 8, n. 1 (1 gennaio 2023): 016105. http://dx.doi.org/10.1063/5.0125947.
Testo completoConsolino, Luigi, Malik Nafa, Michele De Regis, Francesco Cappelli, Saverio Bartalini, Akio Ito, Masahiro Hitaka et al. "Direct Observation of Terahertz Frequency Comb Generation in Difference-Frequency Quantum Cascade Lasers". Applied Sciences 11, n. 4 (4 febbraio 2021): 1416. http://dx.doi.org/10.3390/app11041416.
Testo completoTesi sul tema "THz emission sources"
Abdul, Hadi Zeinab. "Terahertz emission spectroscopy of multiferroic bismuth ferrite : insights into ultrafast currents and phonon dynamics". Electronic Thesis or Diss., Le Mans, 2024. http://www.theses.fr/2024LEMA1030.
Testo completoTerahertz (THz) technologies have attracted significant interest in the scientific community due to their unique position in the electromagnetic spectrum, bridging the gap between the microwave and infrared regions. This radiation is non-ionizing and can penetrate various materials without causing damage, making it highly attractive for numerous potential applications. Recent advances in ultrafast laser technology have expanded the exploration of THz radiation into a wide range of exciting technologies. It’s now being used in fields like medicine for new imaging techniques, in spectroscopy for analyzing materials, in information and communication technology for faster data transfer, and even in security, agriculture, quality control and fundamental material science. Consequently, the development of efficient and tunable THz sources has become a major focus within the THz community to expand these applications further, motivating the exploration of new materials and emission mechanisms. In my PhD project, I have explored a promising new THz emitter: the well-known multiferroic material ‘Bismuth Ferrite’ (BiFeO3). This multiferroic material is particularly interesting due to its distinctive multiferroic properties. BiFeO3 exhibits both a large ferroelectric polarization and a antiferromagnetic order at room temperature offering a unique interplay of ferroelectric and magnetic orders and making this material a promising candidate for THz generation. Using a THz emission spectroscopy setup that I constructed, with its electro-optical sampling detection, I examine THz emission from three distinct BiFeO3 samples. First one with in-plane polarization, another with out-of-plane polarization, and a third presenting striped domains with two orientations of polarization. This technique allows for the direct observation and analysis of THz radiation emitted by these samples upon above gap laser excitation. The experimental investigation involves a detailed study of the THz transient signals emitted from the BiFeO3 samples under varying experimental conditions. By varying the pump wavelengths, sample orientations, directions of pump light polarization, and pump power levels, we can explore how these factors influence the THz emission. Following this, we extract the carrier dynamics (ultrafast current) and lattice vibrations (optical phonons) contributions to this THz transient. And finally, by analyzing their response to experimental parameters changes, we can have a deeper understanding of the physical mechanisms contributing to these ultrafast dynamics and THz emission in BiFeO3
Ayoub, Anas. "Sources laser ultrarapides performantes dans le moyen IR et le Tz". Thesis, Normandie, 2020. http://www.theses.fr/2020NORMR044.
Testo completoThe atome probe tomography is an instrument for analyzing matter in three dimensions with atomic resolution. This instrument relies on the effect of an electric field generated at the end of a sample cut into the shape of a nanoscale needle to evaporate the surface atoms which are collected by a two-dimensional detector. The measurement of the time of flight of the ions whose evaporation is triggered by an electrical or optical pulse makes it possible to measure the chemical composition in addition to the 3D localization of the atoms. In current atome probes, atomic evaporation is triggered by a high-speed laser emitting in the UV. However, the interaction of UV light with matter induces thermal heating which limits the mass resolution of the instrument and prevents its use for the analysis of fragile materials such as biocompatible components. This thesis work aims to study solutions to promote rapid evaporation while inhibiting unwanted thermal effects of the laser in atome probe. Our approach consists in exploiting ultrashort pulses in the mid-infrared or THz domain due to their high ponderomotive energy associated with low photon energy. This manuscript reports on the development of a bench for the generation and characterization of intense THz pulses. Coupling these radiations with a negatively polarized metallic nanotip has made it possible to characterize the near field induced at the surface of the nanotip, which is strongly modified by the antenna effect. The second part reports on the development of an ultra-fast laser source tunable in the mid-infrared around 3 mm using fluoride glass fibers
Copperwheat, C. M. "The optical emission from ultraluminous X-ray sources". Thesis, University College London (University of London), 2007. http://discovery.ucl.ac.uk/1445395/.
Testo completoXiu, Meng. "Evaluating the emission of air pollutants from different sources". Thesis, Queensland University of Technology, 2022. https://eprints.qut.edu.au/235386/1/Meng%2BXiu%2BThesis%284%29.pdf.
Testo completoDomański, Grzegorz. "The contribution of different sources to the total CO2 emission from soils /". Stuttgart : Inst. für Bodenkunde und Standortslehre, 2003. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=012802754&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.
Testo completoLohmann, Rainer. "Studies on the atmospheric sources, fate and behaviour of dioxins and furans". Thesis, Lancaster University, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.322093.
Testo completoHolt, Joanna. "An observational study of the emission line systems in compact radio sources". Thesis, University of Sheffield, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.419256.
Testo completoHunter, Gillian C. "The behaviour of plumes from point sources in stratified flows". Thesis, Open University, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.315334.
Testo completoUrsini, Francesco. "Constraining the high energy emission sources in the environment of supermassive black holes". Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAY062/document.
Testo completoSupermassive black holes of several hundred million solar masses lie at the centre of most massive galaxies. In 90% of cases, these black holes are in quiescent, very low luminous states. Nevertheless, in the remaining 10%, extremely violent processes are seen, with the liberation of huge amounts of energy especially in the UV, X-ray and gamma-ray bands. We also sometimes observe powerful jets, extending up to several hundred kpc scales. The cores of these galaxies are called Active Galactic Nuclei (AGNs). These are among the most luminous objects in the Universe. The accretion of surrounding matter onto the central supermassive black hole is generally considered as the most likely energy source to explain the extraordinary observed luminosity. The gravitational energy would be partly liberated into an accretion disc as thermal radiation peaking in the optical/UV band, and partly radiated in the X-ray/gamma-ray band by a corona of hot plasma lying in the environment close to the black hole.However, several phenomena are still poorly understood and a number of questions lacks satisfactory answers: what are the dynamics and the structure of the accretion and ejection flows in AGNs? What are the radiative processes producing the UV/X-ray radiation? What is the origin of the different spectral components present in those energy bands? The goal of this thesis is to derive new observational constraints to better answer to these questions. Its originality resides in the development and application of realistic models of thermal Comptonization, allowing on the one hand to better constrain the physical and geometrical properties of the UV and X-ray-emitting regions, and on the other hand to better understand the origin of the different observed spectral components. In particular, we studied the excess of the soft (<2 keV) X-ray emission, seen in a great number of AGNs, and whose origin is still unknown.This work is structured along two main branches. One is the detailed spectral analysis of long, multiwavelength observational campaigns on three Seyfert galaxies (NGC 5548, NGC 7213 and NGC 4593). The quality of the data permitted to reveal the geometrical and physical parameters (in particular the temperature and optical depth) of the thermal corona producing the X-ray continuum. The second branch is based on the analysis of archival data (from the XMM-newton satellite) of a large sample of Seyfert galaxies. This allowed us to derive more general constraints on the high-energy emission processes observed in these objects. These two approaches have shown, in particular, that the soft X-ray emission excess may arise in the warm upper layers of the accretion disc, suggesting a more effective heating of the surface rather than the inner regions
Falcetelli, Francesco. "Modelling of Pencil-Lead Break Acoustic Emission Sources using the Time Reversal Technique". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/16554/.
Testo completoLibri sul tema "THz emission sources"
California Environmental Protection Agency. Air Resources Board. Stationary Source Division., California Environmental Protection Agency. Air Resources Board. Mobile Source Division. e California Environmental Protection Agency. Air Resources Board., a cura di. Mobile source emission reduction credits: Guidelines for the generation and use of mobile source emission reduction credits. [Sacamento]: State of California, California Environmental Protection Agency, Air Resources Board, 1993.
Cerca il testo completoF, Jones B., e United States. National Aeronautics and Space Administration., a cura di. Optical spectroscopy of IRAS sources with the infrared emission bands. [Washington, DC: National Aeronautics and Space Administration, 1987.
Cerca il testo completoUnited States. Environmental Protection Agency. Office of Air Quality Planning and Standards. Technical Support Division e Atmospheric Research and Exposure Assessment Laboratory (U.S.). Quality Assurance Division, a cura di. Protocol for the field validation of emission concentrations from stationary sources. Research Triangle Park, NC: Technical Support Division, Office of Air Quality Planning and Standards and Quality Assurance Division, Atmospheric Research and Exposure Assessment Laboratory, U.S. Environmental Protection Agency, 1991.
Cerca il testo completoDaywitt, William C. 10-60 GHz G/T measurements using the sun as a source: A preliminary study. [Washington, D.C.]: National Bureau of Standards, Dept. of Commerce, 1986.
Cerca il testo completoDaywitt, William C. 10-60 GHz G/T measurements using the sun as a source: A preliminary study. [Washington, D.C.]: National Bureau of Standards, Dept. of Commerce, 1986.
Cerca il testo completoDaywitt, William C. 10-60 GHz G/T measurements using the sun as a source: A preliminary study. [Washington, D.C.]: National Bureau of Standards, Dept. of Commerce, 1986.
Cerca il testo completoDaywitt, William C. 10-60 GHz G/T measurements using the sun as a source: A preliminary study. [Washington, D.C.]: National Bureau of Standards, Dept. of Commerce, 1986.
Cerca il testo completoKananaskis Centre for Environmental Research. Results of the emission source surveys: Emission inventory of sulphur oxides and nitrogen oxides in Alberta. S.l: s.n, 1987.
Cerca il testo completoAnuradha, Koratkar, e United States. National Aeronautics and Space Administration., a cura di. The nature of the energy source in LINERs. [Washington, DC: National Aeronautics and Space Administration, 1996.
Cerca il testo completoInternational Vacuum Electron Sources Conference (5th 2004 Beijing, China). IVESC2004: The 5th International Vacuum Electron Sources Conference : proceedings : September 6-10, 2004, the Media Center Hotel, Beijing, China. Piscataway, N.J: IEEE, 2004.
Cerca il testo completoCapitoli di libri sul tema "THz emission sources"
Zaman, M., K. Kleineidam, L. Bakken, J. Berendt, C. Bracken, K. Butterbach-Bahl, Z. Cai et al. "Methane Production in Ruminant Animals". In Measuring Emission of Agricultural Greenhouse Gases and Developing Mitigation Options using Nuclear and Related Techniques, 177–211. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-55396-8_6.
Testo completoBikam, Peter Bitta. "Technology Innovations in Green Transport". In Green Economy in the Transport Sector, 37–49. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-86178-0_4.
Testo completoZaman, M., K. Kleineidam, L. Bakken, J. Berendt, C. Bracken, K. Butterbach-Bahl, Z. Cai et al. "Greenhouse Gases from Agriculture". In Measuring Emission of Agricultural Greenhouse Gases and Developing Mitigation Options using Nuclear and Related Techniques, 1–10. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-55396-8_1.
Testo completoGoodrick, Scott L., Leland W. Tarnay, Bret A. Anderson, Janice L. Coen, James H. Furman, Rodman R. Linn, Philip J. Riggan e Christopher C. Schmidt. "Fire Behavior and Heat Release as Source Conditions for Smoke Modeling". In Wildland Fire Smoke in the United States, 51–81. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-87045-4_3.
Testo completoBrunetti, G., G. Setti e A. Comastri. "On the X-Ray Emission from the Powerful Radio Galaxies". In Extragalactic Radio Sources, 407–8. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0295-4_145.
Testo completoCarvalho, Joel C. "On the Age of GPS Radio Sources". In Multi-Wavelength Continuum Emission of AGN, 424. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-010-9537-2_134.
Testo completoRuijing, Shi, Ren Peng, Fan Xiaochao e Wang Jianglei. "Study on Optimization Operation of Micro-energy Network Considering Electro-ammonia Conversion". In Proceedings of the 10th Hydrogen Technology Convention, Volume 1, 452–64. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-8631-6_44.
Testo completoRöttgering, Huub. "Distant Radio Galaxies: The Strong Link between the Radio and Optical Emission". In Extragalactic Radio Sources, 583–84. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0295-4_208.
Testo completoBicknell, G. V., M. A. Dopita e C. P. O’dea. "Shock Excitation of Emission Lines and the Relation to GPS Sources". In Extragalactic Radio Sources, 469–70. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0295-4_169.
Testo completoMeyer, Henry J., e Robert R. Alfano. "Conical Emission Produced from Femtosecond Laser Pulses". In The Supercontinuum Laser Source, 445–56. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-06197-4_11.
Testo completoAtti di convegni sul tema "THz emission sources"
Oqbi, Manar Y., e Dhabia M. Al-Mohannadi. "Deciphering the Policy-Technology Nexus: Enabling Effective and Transparent Carbon Capture Utilization and Storage Supply Chains". In Foundations of Computer-Aided Process Design, 844–52. Hamilton, Canada: PSE Press, 2024. http://dx.doi.org/10.69997/sct.185903.
Testo completoKunkel, William M., Christopher P. Donahue, Dominic T. Altamura, Cameron Dudiak, Benjamin Moscona-Remnitz, Nelson C. Goldsworth, Brandon Kennedy e Michael J. Thorpe. "Aerial Gas Mapping Lidar for Methane Emission Source Localization, Quantification, and Large-Scale Statistical Characterization". In CLEO: Applications and Technology, ATh1E.6. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_at.2024.ath1e.6.
Testo completoTANI, Masahiko, Masayoshi TONOUCHI, Kiyomi SAKAI, Zhen WANG, Noriaki ONODERA, Masanori HANGYO, Yoshishige MURAKAMI e Shin-ichi NAKASHIMA. "Emission Properties of YBCO-Film Photo-Switches as THz Radiation Sources". In 1996 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 1996. http://dx.doi.org/10.7567/ssdm.1996.d-5-5.
Testo completoManohara, Harish, Wei Lien Dang, Peter H. Siegel, Michael Hoenk, Ali Husain e Axel Scherer. "Field emission testing of carbon nanotubes for THz frequency vacuum microtube sources". In Micromachining and Microfabrication, a cura di Danelle M. Tanner e Rajeshuni Ramesham. SPIE, 2004. http://dx.doi.org/10.1117/12.531403.
Testo completoKlimov, A. S. "THE SYNTHESIS OF BULK CERAMIC PRODUCTS USING FOREVACUUM PLASMA ELECTRON SOURCE". In Plasma emission electronics. Buryat Scientific Center of SB RAS Press, 2018. http://dx.doi.org/10.31554/978-5-7925-0524-7-2018-139-142.
Testo completoBaldanov, B. B., A. P. Semenov e Ts V. Ranzhurov. "SURROUND THE SOURCE OF THE PLASMA JET ON THE BASIS OF LOW-VOLTAGE NONSTATIONARY DISCHARGE". In Plasma emission electronics. Buryat Scientific Center of SB RAS Press, 2018. http://dx.doi.org/10.31554/978-5-7925-0524-7-2018-92-97.
Testo completoKoval, T. V., V. I. Shin, M. S. Vorobyev, P. V. Moskvin, V. N. Devyatkov e N. N. Koval. "CONDITIONS FOR ENSURING MINIMAL INHOMOGENEITY OF THE ELECTRON BEAM ON THE COLLECTOR IN SOURCES WITH A GRID PLASMA CATHODE". In Plasma emission electronics. Buryat Scientific Center of SB RAS Press, 2023. http://dx.doi.org/10.31554/978-5-7925-0655-8-2023-71-76.
Testo completoMamedov, N. V., M. S. Lobov, I. M. Mamedov, A. Yu Presnyakov e N. N. Shchitov. "CALCULATION OF THE VAC OF A PENNING ION SOURCE FOR A MINIATURE LINEAR ACCELERATOR". In Plasma emission electronics. Buryat Scientific Center of SB RAS Press, 2023. http://dx.doi.org/10.31554/978-5-7925-0655-8-2023-77-82.
Testo completoShin, V. I., M. S. Vorobyev, P. V. Moskvin, V. N. Devyatkov e N. N. Koval. "COMBINED CONTROL OF THE ELECTRON BEAM CURRENT IN A SOURCE WITH A GRID PLASMA CATHODE". In Plasma emission electronics. Buryat Scientific Center of SB RAS Press, 2023. http://dx.doi.org/10.31554/978-5-7925-0655-8-2023-97-100.
Testo completoMoiseenko, I. "Waveguide Modes in the AKR Source". In Planetary Radio Emissions VII. Vienna: Austrian Academy of Sciences Press, 2011. http://dx.doi.org/10.1553/pre7s253.
Testo completoRapporti di organizzazioni sul tema "THz emission sources"
Panek, Jeffrey, Adrian Huth, James McCarthy e Alan Krol. PR-312-18208-E01 Statistical Technique for Estimating NOx Emissions from Infrequently Operated Units. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), giugno 2020. http://dx.doi.org/10.55274/r0011681.
Testo completoChepeliev, Maksym. Development of the Air Pollution Database for the GTAP 10A Data Base. GTAP Research Memoranda, giugno 2020. http://dx.doi.org/10.21642/gtap.rm33.
Testo completoChepeliev, Maksym. Development of the Non-CO2 GHG Emissions Database for the GTAP 10A Data Base. GTAP Research Memoranda, marzo 2020. http://dx.doi.org/10.21642/gtap.rm32.
Testo completoMcGrath, Tom, Wendy Coulson e James McCarthy. PR-312-18209-E01 Methane Emissions from Compressors in Transmission and Storage Subpart W Sources. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), novembre 2019. http://dx.doi.org/10.55274/r0011630.
Testo completoCoulson, Wendy, Tom McGrath e James McCarthy. PR-312-16202-R03 Methane Emissions from Transmission and Storage Subpart W Sources. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), settembre 2019. http://dx.doi.org/10.55274/r0011619.
Testo completoMcGrath, Panek e McCarthy. L52356 Nomenclature for Natural Gas Transmission and Storage Greenhouse Gas Emissions. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), maggio 2012. http://dx.doi.org/10.55274/r0010015.
Testo completoMcCarthy, James. PR-312-18209-E05 Compressor and Facility Leak EFs for T and S - Clarifying Different Program Approaches. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), gennaio 2024. http://dx.doi.org/10.55274/r0000050.
Testo completoCoulson, Wendy, e James McCarthy. PR-312-16202-R02 GHG Emission Factor Development for Natural Gas Compressors. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), maggio 2018. http://dx.doi.org/10.55274/r0011488.
Testo completoStulen. L51628 A Transient Far-Field Model of the Acoustic Emission in Buried Pipelines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), gennaio 1986. http://dx.doi.org/10.55274/r0011317.
Testo completoCrocker, Raju e Yang. L51796 Document CEM Experience in Natural Gas Transmission Industry. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), marzo 1999. http://dx.doi.org/10.55274/r0010426.
Testo completo