Letteratura scientifica selezionata sul tema "Thermonuclear fusion by magnetic confinement"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Thermonuclear fusion by magnetic confinement".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Articoli di riviste sul tema "Thermonuclear fusion by magnetic confinement":

1

Betti, R., P. Y. Chang, B. K. Spears, K. S. Anderson, J. Edwards, M. Fatenejad, J. D. Lindl, R. L. McCrory, R. Nora e D. Shvarts. "Thermonuclear ignition in inertial confinement fusion and comparison with magnetic confinement". Physics of Plasmas 17, n. 5 (maggio 2010): 058102. http://dx.doi.org/10.1063/1.3380857.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Keen, B. E., e M. L. Watkins. "Present State of Nuclear Fusion Research and Prospects for the Future". Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 207, n. 4 (novembre 1993): 269–78. http://dx.doi.org/10.1243/pime_proc_1993_207_049_02.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
This paper traces the development of nuclear fusion research and describes the basic principles involved. The most advanced device used to achieve controlled thermonuclear fusion is the magnetic confinement approach, utilizing the tokamak concept. The Joint European Torus (JET) is the largest tokamak in operation. The operating conditions are described and critical issues outlined. With concerted effort and international collaboration the possibility exists to produce a demonstration reactor.
3

Winterberg, F. "Coriolis force-assisted inertial confinement fusion". Laser and Particle Beams 37, n. 01 (marzo 2019): 55–60. http://dx.doi.org/10.1017/s0263034619000181.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
AbstractA fundamental problem for the realization of laser fusion through the implosion of a spherical target is Kidder's E−1/6 law, where E is the energy needed for ignition, proportional to the 6th power of the ratio R/R0, where R0 and R are the initial and final implosion radii, respectively. This law implies that the ignition energy is very sensitive to the ratio R0/R, or vice versa, the ratio R0/R is very insensitive to the energy input, with R0/R limited by the Rayleigh–Taylor instability. According to still classified data of the Centurion–Halite experiment at the Nevada Test Site, ignition would require an energy of ${\rm E}\simeq 50\,{\rm MJ}$, 25 times larger than the 2 MJ laser at the National Ignition Facility (NIF) reported in the New York Times. This means that even a tenfold increase from 2 to 20 MJ would only decrease the R/R0 ratio by an insignificant factor of 10−1/6 ≃ 0.7. To overcome this problem, it is proposed that the spherical target is replaced with a hollowed-out, rapidly rotating, cm-size ferromagnetic target, accelerated by a rotating traveling magnetic wave to a rotational velocity of ~1 km/s, at the limit of its tensile strength. In a rotating reference system, the general theory of relativity predicts the occurrence of negative gravitational field masses in the center of rotation, with their source located in the Coriolis force field. The density of this negative gravitational field mass can be larger than the magnitude of the positive mass density of a neutron star. The repulsive gravitational force causes the centrifugal force. For a magnetized plasma placed in the rapidly spinning, hollowed-out target chamber, this repulsive force can be balanced by the magnetic force generated by thermomagnetic currents of the Nernst effect. Such a configuration does not suffer from the Rayleigh–Taylor instability, but becomes a small magnetohydrodynamic generator, amplifying the magnetic field to values about equal to those of the Nernst effect, axially confining the plasma. By placing the spinning target in the center of a lithium vortex, the fusion neutrons absorbed in the vortex can breed tritium, and at the same time remove heat from the target chamber to sustain the Nernst effect. A hot spot is thereby produced in the target chamber, which launches a thermonuclear burn wave into a cylindrical deuterium–tritium configuration. With the stability of a rapidly rotating target greatly increased, and the range of 10 MeV electrons in the wall of the cm-size ferromagnetic target, an intense 10 MeV relativistic electron beam drawn from a 10 MJ Marx generator should be sufficient to implode the target for thermonuclear ignition.
4

Соболев, Д. И., e Г. Г. Денисов. "Волноводная антенна с расширенным угловым диапазоном для дистанционного управления направлением волнового пучка". Письма в журнал технической физики 44, n. 5 (2018): 69. http://dx.doi.org/10.21883/pjtf.2018.05.45710.16391.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
AbstractA new method for increasing the angular range of a waveguide antenna for remote steering of the wave-beam direction in thermonuclear-fusion experimental setups with plasma magnetic confinement is proposed. Characteristics for large beam inclination angles can be improved using the synthesized nonuniform waveguide profile. For small angles, the characteristics remain invariable, the waveguide profile differs only slightly from the regular shape, and can be fit to limited waveguide-channel sizes.
5

SCHWENN, ULRICH, W. ANTHONY COOPER, GUO Y. FU, RALF GRUBER, SILVIO MERAZZI e DAVID V. ANDERSON. "Three-Dimensional Ideal Magnetohydrodynamic Stability on Parallel Machines". International Journal of Modern Physics C 02, n. 01 (marzo 1991): 143–57. http://dx.doi.org/10.1142/s0129183191000147.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
On the path towards a thermonuclear fusion reactor there are several technological and physical uncertainties to be understood and solved. One of the most fundamental problems is the appearance of many sorts of instabilities which can either enhance the energy outflow or even destroy the magnetic confinement of the fusion plasma. The knowledge of such instabilities is a prerequisite to a good understanding of the behaviour of actual experiments, and to the design of new devices. Most of the effort is devoted to the study of axisymmetric toroidal configurations such as tokamaks or spheromaks and to helically twisted toroidal devices such as stellarators.
6

Schlossberg, D. J., A. S. Moore, J. S. Kallman, M. Lowry, M. J. Eckart, E. P. Hartouni, T. J. Hilsabeck, S. M. Kerr e J. D. Kilkenny. "Design of a multi-detector, single line-of-sight, time-of-flight system to measure time-resolved neutron energy spectra". Review of Scientific Instruments 93, n. 11 (1 novembre 2022): 113528. http://dx.doi.org/10.1063/5.0101874.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
In the dynamic environment of burning, thermonuclear deuterium–tritium plasmas, diagnosing the time-resolved neutron energy spectrum is of critical importance. Strategies exist for this diagnosis in magnetic confinement fusion plasmas, which presently have a lifetime of ∼1012 longer than inertial confinement fusion (ICF) plasmas. Here, we present a novel concept for a simple, precise, and scale-able diagnostic to measure time-resolved neutron spectra in ICF plasmas. The concept leverages general tomographic reconstruction techniques adapted to time-of-flight parameter space, and then employs an updated Monte Carlo algorithm and National Ignition Facility-relevant constraints to reconstruct the time-evolving neutron energy spectrum. Reconstructed spectra of the primary 14.028 MeV nDT peak are in good agreement with the exact synthetic spectra. The technique is also used to reconstruct the time-evolving downscattered spectrum, although the present implementation shows significantly more error.
7

Clery, Daniel. "Alternatives to tokamaks: a faster-better-cheaper route to fusion energy?" Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 377, n. 2141 (4 febbraio 2019): 20170431. http://dx.doi.org/10.1098/rsta.2017.0431.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
The use of thermonuclear fusion as a source for energy generation has been a goal of plasma physics for more than six decades. Its advantages are many: easy access to fuel and virtually unlimited supply; no production of greenhouse gases; and little radioactive waste produced. But heating fuel to the high temperature necessary for fusion—at least 100 million degrees Celsius—and containing it at that level has proved to be a difficult challenge. The ring-shaped magnetic confinement of tokamaks, which emerged in the 1960s, was quickly identified as the most promising approach and remains so today although a practical commercial reactor remains decades away. While tokamaks have rightly won most fusion research funding, other approaches have also been pursued at a lower level. Some, such as inertial confinement fusion, have emerged from nuclear weapons programs and others from academic efforts. A few have been spun out into start-up companies funded by venture capital and wealthy individuals. Although alternative approaches are less well studied, their proponents argue that they could provide a smaller, cheaper, and faster route to fusion energy production. This article will survey some of the current efforts and where they stand. This article is part of a discussion meeting issue ‘Fusion energy using tokamaks: can development be accelerated?’.
8

Abarzhi, S. I., e K. R. Sreenivasan. "Turbulent mixing and beyond". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 368, n. 1916 (13 aprile 2010): 1539–46. http://dx.doi.org/10.1098/rsta.2010.0021.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Turbulence is a supermixer. Turbulent mixing has immense consequences for physical phenomena spanning astrophysical to atomistic scales under both high- and low-energy-density conditions. It influences thermonuclear fusion in inertial and magnetic confinement systems; governs dynamics of supernovae, accretion disks and explosions; dominates stellar convection, planetary interiors and mantle-lithosphere tectonics; affects premixed and non-premixed combustion; controls standard turbulent flows (wall-bounded and free—subsonic, supersonic as well as hypersonic); as well as atmospheric and oceanic phenomena (which themselves have important effects on climate). In most of these circumstances, the mixing phenomena are driven by non-equilibrium dynamics. While each article in this collection dwells on a specific problem, the purpose here is to seek a few unified themes amongst diverse phenomena.
9

Perkins, L. J., B. G. Logan, G. B. Zimmerman e C. J. Werner. "Two-dimensional simulations of thermonuclear burn in ignition-scale inertial confinement fusion targets under compressed axial magnetic fields". Physics of Plasmas 20, n. 7 (luglio 2013): 072708. http://dx.doi.org/10.1063/1.4816813.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Beurskens, M. N. A., C. Angioni, S. A. Bozhenkov, O. Ford, C. Kiefer, P. Xanthopoulos, Y. Turkin et al. "Confinement in electron heated plasmas in Wendelstein 7-X and ASDEX Upgrade; the necessity to control turbulent transport". Nuclear Fusion 62, n. 1 (14 dicembre 2021): 016015. http://dx.doi.org/10.1088/1741-4326/ac36f1.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Abstract In electron (cyclotron) heated plasmas, in both ASDEX Upgrade (L-mode) and Wendelstein 7-X, clamping of the ion temperature occurs at T i ∼ 1.5 keV independent of magnetic configuration. The ions in such plasmas are heated through the energy exchange power as n e 2 ( T e − T i ) / T e 3 / 2 , which offers a broad ion heating profile, similar to that offered by alpha heating in future thermonuclear fusion reactors. However, the predominant electron heating may put an additional constraint on the ion heat transport, as the ratio T e/T i > 1 can exacerbates ITG/TEM core turbulence. Therefore, in practical terms the strongly ‘stiff’ core transport translates into T i-clamping in electron heated plasmas. Due to this clamping, electron heated L-mode scenarios, with standard gas fueling, in either tokamaks or stellarators may struggle to reach high normalized ion temperature gradients required in a compact fusion reactor. The comparison shows that core heat transport in neoclassically optimized stellarators is driven by the same mechanisms as in tokamaks. The absence of a strong H-mode temperature edge pedestal in stellarators, sofar (which, like in tokamaks, could lift the clamped temperature-gradients in the core), puts a strong requirement on reliable and sustainable core turbulence suppression techniques in stellarators.

Tesi sul tema "Thermonuclear fusion by magnetic confinement":

1

Geulin, Eléonore. "Contribution to the modeling of pellet injection : from the injector to ablation in the plasma". Electronic Thesis or Diss., Aix-Marseille, 2023. http://www.theses.fr/2023AIXM0066.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
La méthode privilégiée d'alimentation des machines à fusion est l'utilisation de glaçons de D et/ou T injectés dans le plasma. Ils sont utilisés actuellement, mais les résultats ne sont pas extrapolables aux futures machines de plus grande taille où le design du système d'injection et la construction de scenarii seront surtout basés sur les simulations. II est donc important de combler les vides dans les modèles existants allant de la fabrication des glaçons au dépôt de matière dans le plasma. Deux manques apparaissent : la modélisation du transport du glaçon dans le tuyau d'injection et la validation du processus d'ablation. Ce travail vise à combler ces vides et comporte 3 parties.- Décrire la physique du dépôt de matière, puis l'état de l'art des principaux résultats et enfin la description des systèmes d'injection de glaçons prévus pour les prochaines machines.- Modéliser le transport du glaçon dans le tuyau d'injection. Les effets pris en compte dans le modèle sont la fragilisation de la glace lors des rebonds, l'augmentation de sa température et son érosion. Le modèle donne notamment le ralentissement et la perte de masse du glaçon au cours du trajet, ainsi que l'énergie élastique stockée lié à son intégrité au sortir du tube.- Contribuer à la validation du code d'ablation HPI2, en comparant ses prédictions aux données mesurées dans les nuages d'ablation. La méthode utilisée est un calcul de jeu de données synthétiques à partir des simulations et en les comparant aux mesures. Cette méthode a permis de valider les hypothèses et approximations du modèle d'ablation susmentionné
The preferred method of fueling fusion device is the use of D and/or T pellets injected into the plasma. They are currently used, but the results cannot be extrapolated to future larger reactors where the design of the injection system and the construction of scenarios will be mainly based on simulations. It is therefore important to fill in the gaps in the existing models from the manufacture of pellets to the deposition of material in the plasma. Two lacks of knowledge appear: the modeling of the pellet transport in the injection pipe and the validation of the ablation process. This work aims to fill these gaps and consists of 3 parts.- Describe the physics of material deposition, then the state of the art of the main results and finally the description of the pellet injection systems planned for the next machines.- Model the transport of the pellet in the injection pipe. The effects taken into account in the model are the weakening of the ice during rebounds, the increase in its temperature and its erosion. The model gives in particular the slowing down and the loss of mass of the pellet during the journey, as well as the stored elastic energy linked to its integrity on leaving the tube.- Contribute to the validation of the HPI2 ablation code, by comparing its predictions to data measured in ablation clouds. The method used is a calculation of synthetic data sets from simulations and comparing them to measurements. This method made it possible to validate the assumptions and approximations of the ablation model
2

Louzguiti, Alexandre. "Magnetic screening currents and coupling losses induced in superconducting magnets for thermonuclear fusion". Thesis, Aix-Marseille, 2017. http://www.theses.fr/2017AIXM0574.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Les tokamaks visent à produire de l'énergie par fusion thermonucléaire en chauffant un plasma d'hydrogène jusqu'à 150 millions K et en le confinant à l’aide d’un champ magnétique intense créé par des aimants transportant d’importants courants. La supraconductivité est un atout précieux ici car permettant de réduire la taille des aimants et leur consommation énergétique en contrepartie d’un refroidissement cryogénique. Cependant, dans les tokamaks, des variations de champ magnétique apparaissent (ex : décharge du solénoïde central) et génèrent des pertes par induction dans les aimants. Si leur température augmente trop, ils peuvent perdre leur état supraconducteur lors d’une transition brutale appelée "quench": afin de les protéger, ils sont déchargés de leur courant entraînant ainsi la perte du plasma. Nous avons concentré notre travail sur la modélisation de ces pertes car leur connaissance est cruciale pour le bon dimensionnement du refroidissement des aimants et la prédiction des limites opérationnelles du tokamak. Afin d'améliorer la compréhension physique de ce phénomène complexe et de proposer des solutions simples mais réalistes, facilement intégrables dans des plateformes multiphysiques déjà fortement sollicitées par la modélisation d'autres effets, nous avons choisi d'adopter une approche analytique. Les câbles présents dans les tokamaks ayant une architecture assez complexe (centaines de brins torsadés ensemble), nous avons mené des études analytiques et expérimentales aux différentes échelles du câble; nous comparons ensuite les résultats de notre approche à ceux d'autres modèles existants (ex : numériques) et, lorsque cela est possible, à l'expérience
Tokamaks aim at producing energy by thermonuclear fusion heating a hydrogen plasma up to 150 million K and confining it with an intense magnetic field created by magnets carrying important currents. Superconductivity is a very valuable asset in this field since it allows to reduce the size of the magnets and their energy consumption in exchange for cooling them down to cryogenic temperatures. However, in tokamaks, magnetic field variations occur (e.g. due to the central solenoid discharge) and generate induction losses in the magnets. If their temperature increases too much, they lose their superconducting properties in a brutal transition called "quench": to protect their integrity, they are then discharged and the magnetic confinement of the plasma is lost. We have therefore focused on the modeling of these losses - more precisely on the “coupling losses” - since their knowledge is crucial to safely adapt the cryogenic cooling of the magnets and predict the operating limits of the tokamak. In order to both enhance the physical understanding of this complex phenomenon and provide simple but realistic solutions that can easily be integrated in multiphysics platforms already heavily solicited by the modeling of other effects, we have chosen to adopt an analytical approach on this problem. The cables commonly considered for tokamaks presenting a rather complex architecture (several hundreds of strands twisted together in specific patterns), we have carried out analytical and experimental studies at the different scales of the cable; we then compare the results of our approach to other existing ones (e.g. numerical models) and, when possible, to the experiment
3

Louzguiti, Alexandre. "Magnetic screening currents and coupling losses induced in superconducting magnets for thermonuclear fusion". Electronic Thesis or Diss., Aix-Marseille, 2017. http://www.theses.fr/2017AIXM0574.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Les tokamaks visent à produire de l'énergie par fusion thermonucléaire en chauffant un plasma d'hydrogène jusqu'à 150 millions K et en le confinant à l’aide d’un champ magnétique intense créé par des aimants transportant d’importants courants. La supraconductivité est un atout précieux ici car permettant de réduire la taille des aimants et leur consommation énergétique en contrepartie d’un refroidissement cryogénique. Cependant, dans les tokamaks, des variations de champ magnétique apparaissent (ex : décharge du solénoïde central) et génèrent des pertes par induction dans les aimants. Si leur température augmente trop, ils peuvent perdre leur état supraconducteur lors d’une transition brutale appelée "quench": afin de les protéger, ils sont déchargés de leur courant entraînant ainsi la perte du plasma. Nous avons concentré notre travail sur la modélisation de ces pertes car leur connaissance est cruciale pour le bon dimensionnement du refroidissement des aimants et la prédiction des limites opérationnelles du tokamak. Afin d'améliorer la compréhension physique de ce phénomène complexe et de proposer des solutions simples mais réalistes, facilement intégrables dans des plateformes multiphysiques déjà fortement sollicitées par la modélisation d'autres effets, nous avons choisi d'adopter une approche analytique. Les câbles présents dans les tokamaks ayant une architecture assez complexe (centaines de brins torsadés ensemble), nous avons mené des études analytiques et expérimentales aux différentes échelles du câble; nous comparons ensuite les résultats de notre approche à ceux d'autres modèles existants (ex : numériques) et, lorsque cela est possible, à l'expérience
Tokamaks aim at producing energy by thermonuclear fusion heating a hydrogen plasma up to 150 million K and confining it with an intense magnetic field created by magnets carrying important currents. Superconductivity is a very valuable asset in this field since it allows to reduce the size of the magnets and their energy consumption in exchange for cooling them down to cryogenic temperatures. However, in tokamaks, magnetic field variations occur (e.g. due to the central solenoid discharge) and generate induction losses in the magnets. If their temperature increases too much, they lose their superconducting properties in a brutal transition called "quench": to protect their integrity, they are then discharged and the magnetic confinement of the plasma is lost. We have therefore focused on the modeling of these losses - more precisely on the “coupling losses” - since their knowledge is crucial to safely adapt the cryogenic cooling of the magnets and predict the operating limits of the tokamak. In order to both enhance the physical understanding of this complex phenomenon and provide simple but realistic solutions that can easily be integrated in multiphysics platforms already heavily solicited by the modeling of other effects, we have chosen to adopt an analytical approach on this problem. The cables commonly considered for tokamaks presenting a rather complex architecture (several hundreds of strands twisted together in specific patterns), we have carried out analytical and experimental studies at the different scales of the cable; we then compare the results of our approach to other existing ones (e.g. numerical models) and, when possible, to the experiment
4

Knutsson, Adam. "Modelling magnetic confinement of plasma in toroidal fusion devices". Thesis, KTH, Skolan för elektro- och systemteknik (EES), 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-199337.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Alessi, Edoardo. "Measurement and transmission of electrical and magnetic quantities in magnetic confinement fusion devices". Doctoral thesis, Università degli studi di Padova, 2009. http://hdl.handle.net/11577/3426452.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

McCollam, Karsten James. "Investigation of magnetic relaxation in coaxial helicity injection /". Thesis, Connect to this title online; UW restricted, 2000. http://hdl.handle.net/1773/9741.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Barnard, Harold Salvadore. "External proton beam analysis of plasma facing materials for magnetic confinement fusion applications". Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/58385.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Nuclear Science and Engineering, 2009.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 135-137).
A 1.7MV tandem accelerator was reconstructed and refurbished for this thesis and for surface science applications at the Cambridge laboratory for accelerator study of surfaces (CLASS). At CLASS, an external proton beam set-up was designed and constructed to perform in-air ion beam analysis on plasma facing divertor tiles from the Alcator C-Mod tokamak. A Particle Induced Gamma Emission (PIGE) technique was developed for boron depth profiling. In addition, Particle Induced X-ray Emission (PIXE) was implemented and used for a comprehensive study of poloidal tungsten migration in the C-Mod divertor. A novel PIGE technique was developed for measuring depth profiles of boron deposition on C-Mod tile surfaces. Boron (B) is regularly deposited on C-Mod tiles to improve plasma performance. This technique is therefore useful for studying the interaction of B with plasma facing components (PFC) to develop a better understanding of the effects of B in Alcator C-Mod. The technique involves taking multiple PIGE yield measurements of a single sample while changing the beams path-length through the air to vary the energy of the beam incident on the sample. A numerical code was written to deconvolve boron depth profiles from these gamma yields by exploiting the sharply peaked cross section of the '0B(p, ay)7Be resonance reaction. Simulations demonstrate that this code converges to the expected results. Preliminary measurements of C-Mod tiles were performed using the external proton beam to induce 429keV gamma emission from the 10B(p, ay)7Be reaction which was measured, using a Sodium Iodide (Nal) scintillation detector.
(cont.) These preliminary results verified the feasibility of this technique. An external PIXE ion beam analysis study was conducted to measure campaign integrated, poloidal tungsten (W) migration patterns in the C-Mod divertor. Eroded W from a toroidally continuous row of W tiles near the outer divertor strike point was used as a tracer to map W erosion and redeposition onto a set of Mo and W tiles that covered the poloidal extent of the C-Mod lower divertor which were removed following the 2008 experimental campaign. These tiles were examined for W using external Particle Induced X-ray emission (X-PIXE) analysis; a highly W sensitive ion beam analysis (IBA) technique in which a characteristic x-ray emission is induced from a material surface as it is exposed to an external proton beam, produced by the electrostatic tandem accelerator. With a set of systematic high spacial resolution measurements (~ 3mm resolution), complete poloidal profiles of W redeposition have been constructed. These profiles indicate W transport and redeposition of up to 1.5 x 102 atoms/m 2 (14nm of equivalent W thickness) in several regions including the outer divertor, the inner divertor, and inside the private flux region. In addition to the W results, PIXE allowed for indirect measurements of spatially resolved boron profiles and direct measurements of titanium, chromium, and iron. A comprehensive description and explanation these PIGE and PIXE studies and their results are presented.
by Harold Salvadore Barnard.
S.M.
8

Samulski, Camille Clement. "Deceleration Stage Rayleigh-Taylor Instability Growth in Inertial Confinement Fusion Relevant Configurations". Thesis, Virginia Tech, 2021. http://hdl.handle.net/10919/103703.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Experimental results and simulations of imploding fusion concepts have identified the Rayleigh-Taylor (RT) instability as one of the largest inhibitors to achieving fusion. Understanding the origin and development of the RT instability will allow for the development of mitigating measures to dampen the instability growth, thus improving the chance that fusion concepts such as inertial confinement fusion (ICF) are successful. A study of 1D and 2D simulations are presented for investigating RT instability growth in deceleration stage of imploding geometries. Two cases of laser-driven implosion geometry, Cartesian and cylindrical, are used to study late stage deceleration-phase RT instability development on the interior surface of imploding targets. FLASH's hydrodynamic (HD) and magnetohydrodynamic (MHD) modeling capabilities are used for different laser and target parameters in order to study the RT instability and the impact of externally applied magnetic fields on their evolution. Several simulation regimes have been identified that provide novel insight into the impact that a seeded magnetic field can have on RT instability growth and the conditions under which magnetic field stabilization of the RT instability is observable. Finally, future work and recommendations are made.
Master of Science
The direction for the future of renewable energy is uncertain at this time; however, it is known that the future of human energy consumption must be green in order to be sustainable. Fusion energy presents an opportunity for an unlimited clean renewable energy source that has yet to be realized. Fusion is achieved only by overcoming the earthly limitations presented by trying to replicate conditions at the interior of stellar structures. The pressures, temperature, and densities seen in the interior of stars are not easily reproduced, and thus human technology must be developed to reach these difficult stellar conditions in order to harvest fusion energy. There are two main branches of developmental technology geared towards achieving the difficult conditions controlled nuclear fusion presents, magnetic confinement fusion (MCF) and inertial confinement fusion (ICF)[17]. Yet in both approaches barriers exist which have thwarted the efforts toward reaching fusion ignition which must be addressed through scientific discovery. Successfully reaching ignition is only the first step in the ultimate pursuit of a self sustaining fusion reactor. This work will focus on the experimental ICF configuration, and on one such inhibitor toward achieving ignition, the Rayleigh-Taylor (RT) instability. The RT instability develops on the surfaces of the fusion fuel capsules, targets, and causes nonuniform compression of the target. This nonuniform compression of the target leads to lower pressures and densities through the material mixing of fusion fuel and the capsule shell, which ultimately leads to challenges with reaching fusion ignition. The work presented here was performed utilizing the University of Chicago's FLASH code, which is a state-of-the-art open source radiation magneto-hydrodynamic (MHD) code used for plasma and astrophysics computational modeling [11]. Simulations of the RT instability are performed using FLASH in planar and cylindrical geometries to explore fundamental Rayleigh-Taylor instability evolution for these two different geometries. These geometries provide easier access for experimental diagnostics to probe RT dynamics. Additionally, the impact of externally applied magnetic fields are explored in an effort to examine if and how the detrimental instability can be controlled.
9

Riquier, Raphaël. "Magnetic field in laser plasmas : non-local electron transport and reconnection". Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLX004/document.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Dans le cadre de la fusion par confinement inertiel, une capsule contenant le combustible de deutérium-tritium est implosée soit par irradiation laser (attaque directe, interaction laser – cible de numéro atomique faible), soit par un rayonnement de corps noir émis par une cavité convertissant le rayonnement laser (attaque indirecte, interaction laser – cible de numéro atomique élevé).Dans les deux cas, une modélisation correcte du transport électronique est cruciale pour avoir des simulations hydro-radiatives prédictives. Cependant, il a été montré très tôt que les hypothèses d'un mécanisme de transport linéaire ne sont pas applicables dans le cadre de l'irradiation d'une cible solide par un laser de puissance (I~10^14 W/cm²). Cela est dû d'une part à des gradients de température très importants (effets cinétiques dits « non-locaux ») ainsi qu'à la présence d'un champ magnétique auto-généré par effet thermo-électrique. Enfin, le flux de chaleur et le champ magnétique sont fortement couplés au travers de deux mécanismes : le transport du champ magnétique par le flux de chaleur (effet Nernst) et la rotation et inhibition du flux de chaleur par la magnétisation du plasma (effet Righi-Leduc).Dans le présent manuscrit, nous commencerons par exposer les différents modèles de transport électronique, et en particulier le modèle non-local avec champ magnétique, implémenté dans le code hydro-radiatif FCI2. Par la suite, nous chercherons à valider ce modèle par des comparaisons avec un code cinétique, puis avec une expérience lors de laquelle le champ magnétique a été mesuré par radiographie proton. Cela fait, nous utiliserons le code FCI2 pour expliquer la source et le transport du champ, ainsi que son effet sur l'interaction.Enfin, nous étudierons la reconnexion du champ magnétique, lors de l'irradiation d'une cible par deux faisceaux lasers
In the framework of the inertial confinement fusion, a pellet filled with the deuterium-tritium fuel is imploded, either through laser irradiation (direct drive, laser – low atomic number target interaction) or by the black body radiation from a cavity converting the laser radiation (indirect drive, laser – high atomic number target interaction).In both cases, a correct modeling of the electron transport is of first importance in order to have predictive hydro-radiative simulations. Nonetheless, it has been shown early on that the hypothesis of the linear transport are not valid in the framework of a solid target irradiated by a high power laser (I~1014 W/cm²). This is due in part to very steep temperature gradients (kinetic effects, so-called « non-local ») and because of a magnetic field self-generated through the thermo-electric effect. Finally, the heat flux and the magnetic field are strongly coupled through two mecanisms: the advection of the field with the heat flux (Nernst effect) and the rotation and inhibition of the heat flux by the plasma's magnetization (Righi-Leduc effect).In this manuscript, we will first present the various electron transport models, particularly the non-local with magnetic field model included in the hydro-radiative code FCI2. Following, in order to validate this model, we will compare it first against a kinetic code, and then with an experiment during which the magnetic field has been probed through proton radiography. Once the model validated, we will use FCI2 simulations to explain the source and transport of the field, as well as its effect on the interaction.Finally, the reconnection of the magnetic field, during the irradiation of a solid target by two laser beams, will be studied
10

Meireni, Mutia. "Spectroscopic diagnostic of magnetic fusion plasmas : application to ITER". Thesis, Aix-Marseille, 2019. http://www.theses.fr/2019AIXM0218.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Cette thèse porte sur la modélisation du rayonnement de raies émis par les plasmas de fusion magnétique pour faire des applications au diagnostic. Une attention particulière est apportée aux électrons découplés (« runaway »), qui sont attendus avec une proportion significative dans ITER. Dans le premier chapitre, nous donnons une introduction générale sur la fusion magnétique et sur les machines tokamak, ainsi que sur les disruptions ; ces dernières sont engendrées par des instabilités et elles peuvent conduire à la formation de faisceaux d’électrons runaway très énergétiques. Dans le deuxième chapitre, le formalisme utilisé dans les modèles d'élargissement de raies spectrales est présenté, à partir d’outils de mécanique quantique et de physique statistique. Des calculs numériques de raies de Balmer sont également effectués dans le cadre d’une application aux diagnostics synthétiques. Dans le troisième chapitre, nous discutons de la physique relative aux ondes de Langmuir, notamment, l’amortissement Landau et son processus inverse, l’instabilité faisceau-plasma. Ce processus engendre un champ électrique oscillant, dont l’amplitude peut être évaluée à l’aide de la théorie quasi-linéaire. Nous présentons cette théorie ainsi qu’une généralisation aux régimes fortement non linéaires dans lesquels les ondes de Langmuir sont couplées aux ondes sonores et électromagnétiques. Enfin, dans le quatrième chapitre, nous appliquons le formalisme pour différentes densités de faisceau dans des conditions de plasma de bord de tokamak et nous examinons la faisabilité d’un diagnostic spectroscopique des électrons runaway
This thesis focuses on the modeling of the atomic line radiation emitted by magnetic fusion plasmas for diagnostic purposes. An improvement of the accuracy of diagnostics is proposed, in order to have a better characterization of runaway electrons in the context of ITER preparation. In the first chapter, we discuss about fusion reaction, about how it is produced in tokamak machines, and we discuss about the disruptions, which are a consequence of instabilities. They are one cause of runaway electrons. In the second chapter, the formalism used in spectral line broadening models is introduced based on quantum mechanics and statistical physics. Numerical calculations are also presented. They are done for applications to synthetic diagnostics in tokamak divertor plasma conditions. Hydrogen Balmer lines with a moderate principal quantum number are considered. In the third chapter, we discuss the physics underlying Langmuir waves. This includes the Landau damping process and its inverse counterpart, the plasma-beam instability mechanism. It is possible to calculate the magnitude of the electric field which is created by a beam of electrons using the quasilinear theory. We present this theory and we present a generalization to strongly nonlinear regimes for which the Langmuir waves are coupled with the ion sound and electromagnetic waves. Finally, we discuss this model and, next, apply the formalism for different beam densities in tokamak edge plasmas and we examine the possibility for making a diagnostic of runaway electrons based on atomic spectroscopy in the fourth chapter

Libri sul tema "Thermonuclear fusion by magnetic confinement":

1

Zohuri, Bahman. Magnetic Confinement Fusion Driven Thermonuclear Energy. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51177-1.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Zohuri, Bahman. Inertial Confinement Fusion Driven Thermonuclear Energy. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50907-5.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

C, Davidson Ronald, e Foreign Applied Sciences Assessment Center., a cura di. Soviet magnetic confinement fusion research. McLean, VA: Science Applications International Corp., 1987.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

International Conference on Advanced Diagnostics for Magnetic and Inertial Fusion (2001 Varenna, Italy). Advanced diagnostics for magnetic and inertial fusion. New York: Kluwer Academic/Plenum Publishers, 2002.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Braams, C. M. Nuclear fusion: Half a century of magnetic confinement fusion research. Bristol: IOP, 2002.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Pitcher, C. S. Review of particle fuelling and recycling processes in magnetic fusion devices. Mississauga, Ont: Canadian Fusion Fuels Technology Project, 1987.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Stangeby, P. C. The plasma boundary of magnetic fusion devices: P.C. Stangeby. Bristol: Institute of Physics Pub., 2000.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Stacey, Weston M. Fusion: An introduction to the physics and technology of magnetic confinement fusion. 2a ed. Weinheim [Germany]: Wiley-VCH, 2010.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Workshop on Magnetic Confinement Fusion (2nd 1990 Santander, Spain). Transport and confinement in toroidal devices: 2nd Workshop on Magnetic Confinement Fusion, Santander, Spain, 2-6 July 1990. Bristol: A. Hilger, 1992.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Weiland, Jan. Stability and Transport in Magnetic Confinement Systems. New York, NY: Springer New York, 2012.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Capitoli di libri sul tema "Thermonuclear fusion by magnetic confinement":

1

Zohuri, Bahman. "Confinement Systems for Controlled Thermonuclear Fusion". In Magnetic Confinement Fusion Driven Thermonuclear Energy, 103–82. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51177-1_3.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Zohuri, Bahman. "Foundation of Electromagnetic Theory". In Magnetic Confinement Fusion Driven Thermonuclear Energy, 1–48. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51177-1_1.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Zohuri, Bahman. "Principles of Plasma Physics". In Magnetic Confinement Fusion Driven Thermonuclear Energy, 49–101. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51177-1_2.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Grieger, G. "Controlled Thermonuclear Fusion by Magnetic Confinement — State of the Art and Strategy". In Muon-Catalyzed Fusion and Fusion with Polarized Nuclei, 251–59. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4757-5930-3_20.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Zohuri, Bahman. "Inertial Confinement Fusion (ICF)". In Inertial Confinement Fusion Driven Thermonuclear Energy, 193–238. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50907-5_4.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Zohuri, Bahman. "Confinement Systems for Controlled Thermonuclear Fusion". In Plasma Physics and Controlled Thermonuclear Reactions Driven Fusion Energy, 99–140. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47310-9_3.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Zohuri, Bahman. "Physics of Inertial Confinement Fusion (ICF)". In Inertial Confinement Fusion Driven Thermonuclear Energy, 133–92. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50907-5_3.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Zohuri, Bahman. "Essential Physics of Inertial Confinement Fusion (ICF)". In Inertial Confinement Fusion Driven Thermonuclear Energy, 61–131. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50907-5_2.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Zohuri, Bahman. "Short Course in Thermal Physics and Statistical Mechanics". In Inertial Confinement Fusion Driven Thermonuclear Energy, 1–59. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50907-5_1.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Fujita, Junji, Kazuo Kawahata, Kiyokata Matsuura, Masataka Sakata, Setsuya Fujiwaka e Tohru Matoba. "A Hybrid Magnetic Probe for Steady State Magnetic Field Measurements". In Diagnostics for Experimental Thermonuclear Fusion Reactors, 103–6. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-0369-5_10.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Atti di convegni sul tema "Thermonuclear fusion by magnetic confinement":

1

Li, Guoqing, Chao Xing, Yexi Kang e Xiaozhen Li. "Consideration on Selection of Design Codes and Standards for China Fusion Engineering Testing Reactor". In 2013 21st International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/icone21-15476.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
After establishment of national integration design group for magnetic confinement fusion reactor in 2011, China has started its concept design activities for China Fusion Engineering Testing Reactor (hereinafter referred to as CFETR). According to the design goals of CFETR, it will be a nuclear facility contain self-sustained tritium cycle loop. As a nuclear facility, in order to assure the safety and reliability of design results of CFETR, all design should be based on existing codes and standards, or some special specifications. This paper will give introductions to existing major codes and standards in the field of magnetic confinement fusion, including the codes published by American Society of Mechanical Engineers (ASME), the standards published by French society for design and construction and in-service inspection rules for nuclear islands (AFCEN), the technical documents issued by International Thermonuclear Experimental Reactor (ITER) Organization, the standards published by nuclear industry and relating industries in China, and so on. After taking into account the requirements of the CFETR and the status of standardization of nuclear industry in China, the paper will analyze and discuss the considerations on how to select applicable design codes and standards for CFETR.
2

Hollis, K. J., B. D. Bartram e M. Rödig. "Plasma Sprayed Beryllium High Heat Flux Components". In ITSC2005, a cura di E. Lugscheider. Verlag für Schweißen und verwandte Verfahren DVS-Verlag GmbH, 2005. http://dx.doi.org/10.31399/asm.cp.itsc2005p0122.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Abstract The development of beryllium first wall components for future magnetic confinement fusion experiments such as the International Thermonuclear Experimental Reactor (ITER) is a topic of great importance as the ITER construction phase is about to begin. The beryllium components must be able to survive the harsh plasma environment for extended periods of time during operation. Furthermore, cost and detrimental health effects must be kept to a minimum during the fabrication and operation processes. The work described here details the requirements for ITER first wall components and describes experiments to produce beryllium high heat flux components by plasma spray deposition. Experimental parameters and characterization results from the components are presented. Results of initial high heat flux testing under electron beam irradiation show performance exceeding that required for ITER first wall components.
3

Chen, C., J. R. Becker e J. J. Farrell. "Energy Confinement Time in a Magnetically Confined Thermonuclear Fusion Reactor". In 2022 IEEE International Conference on Plasma Science (ICOPS). IEEE, 2022. http://dx.doi.org/10.1109/icops45751.2022.9813043.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Winterberg, F. "Thermonuclear Plasma Confinement with Thermomagnetic Currents Generated by Nuclear Reactions from Fusion Neutrons". In PLASMA AND FUSION SCIENCE: 16th IAEA Technical Meeting on Research using Small Fusion Devices; XI Latin American Workshop on Plasma Physics. AIP, 2006. http://dx.doi.org/10.1063/1.2405908.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Miramar Blazquez, Jose F. "Study of channeling in thermonuclear plasmas by laser in the inertial confinement fusion". In 2008 IEEE 35th International Conference on Plasma Science (ICOPS). IEEE, 2008. http://dx.doi.org/10.1109/plasma.2008.4590693.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Felix, Jose, e Miramar Blazquez. "Trapped light bullets into a thermonuclear plasma corresponding to the inertial confinement fusion". In 2008 IEEE 35th International Conference on Plasma Science (ICOPS). IEEE, 2008. http://dx.doi.org/10.1109/plasma.2008.4590694.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Arzhannikov, A. V., A. V. Anikeev, A. D. Beklemishev, A. A. Ivanov, I. V. Shamanin, A. N. Dyachenko e O. Yu Dolmatov. "Subcritical assembly with thermonuclear neutron source as device for studies of neutron-physical characteristics of thorium fuel". In OPEN MAGNETIC SYSTEMS FOR PLASMA CONFINEMENT (OS2016): Proceedings of the 11th International Conference on Open Magnetic Systems for Plasma Confinement. Author(s), 2016. http://dx.doi.org/10.1063/1.4964246.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

He, X. T., e Y. S. Li. "Physical processes of volume ignition and thermonuclear burn for high-gain inertial confinement fusion". In The 11th international workshop on laser interaction and related plasma phenomena. AIP, 1994. http://dx.doi.org/10.1063/1.46942.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Sowder, William, e Richard W. Barnes. "ASME Division IV Magnetic Confinement Fusion Energy Devices". In ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/pvp2010-25128.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
There is an on-going effort within the ASME Section III Codes and Standards organization approved by the ASME Board of Nuclear Codes and Standards to develop rules for the construction of fusion-energy-related components such as vacuum vessel, cryostat and superconductor structures and their interaction with each other. These rules will be found in Division IV of Section III entitled “Magnetic Confinement Fusion Energy Devices (BPV III)”. Other related support structures, including metallic and non-metallic materials, containment or confinement structures, fusion-system piping, vessels, valves, pumps, and supports will also be covered. The rules shall contain requirements for materials, design, fabrication, testing, examination, inspection, certification, and stamping. The formation of a new Work Group Fusion Energy Devices that will develop these rules is just beginning to develop its membership and future working group support structures.
10

Sabri, N. G., e T. Benouaz. "Magnetic confinement of the plasma fusion by Tokamak machine". In 2009 3rd ICTON Mediterranean Winter Conference (ICTON-MW 2009). IEEE, 2009. http://dx.doi.org/10.1109/ictonmw.2009.5385611.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Rapporti di organizzazioni sul tema "Thermonuclear fusion by magnetic confinement":

1

Berk, H. L. Fusion, magnetic confinement. Office of Scientific and Technical Information (OSTI), agosto 1992. http://dx.doi.org/10.2172/7082095.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Berk, H. L. Fusion, magnetic confinement. Office of Scientific and Technical Information (OSTI), agosto 1992. http://dx.doi.org/10.2172/10173251.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

McKenney, B., M. McGrain, R. Davidson, M. Abdou, L. Berry e J. Lyon. Japanese magnetic confinement fusion research. Office of Scientific and Technical Information (OSTI), gennaio 1990. http://dx.doi.org/10.2172/6765026.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

McKenney, B., M. McGrain, R. Hazeltine, K. Gentle, J. Hogan, M. Porkolab e Sigmar. West European magnetic confinement fusion research. Office of Scientific and Technical Information (OSTI), gennaio 1990. http://dx.doi.org/10.2172/6860808.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Friedman, A. Principal Challenges in Toroidal Magnetic Confinement Fusion Systems. Office of Scientific and Technical Information (OSTI), giugno 2023. http://dx.doi.org/10.2172/1984761.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Rostoker, N. Large orbit magnetic confinement systems for advanced fusion fuels. Office of Scientific and Technical Information (OSTI), gennaio 1992. http://dx.doi.org/10.2172/5077274.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

McKenney, B., M. McGrain, R. Davidson, R. Hazeltine e M. Abdou. Comparative assessment of world research efforts on magnetic confinement fusion. Office of Scientific and Technical Information (OSTI), febbraio 1990. http://dx.doi.org/10.2172/6860799.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

NASH, THOMAS J. Adiabatic Quasi-Spherical Compressions Driven by Magnetic Pressure for Inertial Confinement Fusion. Office of Scientific and Technical Information (OSTI), novembre 2000. http://dx.doi.org/10.2172/771501.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Argo, Jeffrey W., Jeffrey W. Kellogg, Daniel Ignacio Headley, Brian Scott Stoltzfus, Caleb J. Waugh, Sean M. Lewis, John Larry, Jr Porter et al. LDRD final report on confinement of cluster fusion plasmas with magnetic fields. Office of Scientific and Technical Information (OSTI), novembre 2011. http://dx.doi.org/10.2172/1030401.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Callen, J. D. Fusion Plasma Theory: Task 1, Magnetic confinement Fusion Plasma Theory. Annual progress report, November 16, 1992--November 15, 1993. Office of Scientific and Technical Information (OSTI), ottobre 1993. http://dx.doi.org/10.2172/10191766.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Vai alla bibliografia