Articoli di riviste sul tema "Thermionics"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "Thermionics".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.
ZHANG, C. "EFFECT OF INELASTIC SCATTERING OF HOT ELECTRONS ON THERMIONIC COOLING IN A SINGLE-BARRIER STRUCTURE". International Journal of Modern Physics B 14, n. 14 (10 giugno 2000): 1451–57. http://dx.doi.org/10.1142/s0217979200001503.
Testo completoKhoshaman, Amir H., Harrison D. E. Fan, Andrew T. Koch, George A. Sawatzky e Alireza Nojeh. "Thermionics, Thermoelectrics, and Nanotechnology: New Possibilities for Old Ideas". IEEE Nanotechnology Magazine 8, n. 2 (giugno 2014): 4–15. http://dx.doi.org/10.1109/mnano.2014.2313172.
Testo completoHumphrey, T. E., M. F. O’Dwyer, C. Zhang e R. A. Lewis. "Solid-state thermionics and thermoelectrics in the ballistic transport regime". Journal of Applied Physics 98, n. 2 (15 luglio 2005): 026108. http://dx.doi.org/10.1063/1.1977191.
Testo completoMarshall, Paul. "Making Old Television Technology Make Sense". VIEW Journal of European Television History and Culture 8, n. 15 (27 ottobre 2019): 32. http://dx.doi.org/10.18146/2213-0969.2019.jethc163.
Testo completoHuang, Sunchao, Matthew Sanderson, Yan Zhang e Chao Zhang. "High efficiency and non-Richardson thermionics in three dimensional Dirac materials". Applied Physics Letters 111, n. 18 (30 ottobre 2017): 183902. http://dx.doi.org/10.1063/1.5006277.
Testo completoKhoshaman, Amir H., Andrew T. Koch, Mike Chang, Harrison D. E. Fan, Mehran Vahdani Moghaddam e Alireza Nojeh. "Nanostructured Thermionics for Conversion of Light to Electricity: Simultaneous Extraction of Device Parameters". IEEE Transactions on Nanotechnology 14, n. 4 (luglio 2015): 624–32. http://dx.doi.org/10.1109/tnano.2015.2426149.
Testo completoVoronovich, D. A. "Thermionic properties of lutetium borides single crystals". Functional materials 21, n. 3 (30 settembre 2014): 266–73. http://dx.doi.org/10.15407/fm21.03.266.
Testo completoKoeck, F. A. M., J. M. Garguillo, John R. Smith, Y. J. Tang, G. L. Bilbro e Robert J. Nemanich. "Vacuum Thermionic Energy Conversion Based on Nanocrystalline Diamond Films". Advances in Science and Technology 48 (ottobre 2006): 83–92. http://dx.doi.org/10.4028/www.scientific.net/ast.48.83.
Testo completoZhu, Weiwei, Cong Ji e Fan Gu. "Effects of heat transfer on characteristics of thermionic energy converter". Canadian Journal of Physics 96, n. 12 (dicembre 2018): 1247–58. http://dx.doi.org/10.1139/cjp-2017-0435.
Testo completoGalstian, I. Ye, E. G. Len, E. A. Tsapko, H. Yu Mykhailova, V. Yu Koda, M. O. Rud, M. Ya Shevchenko, V. I. Patoka, M. M. Yakymchuk e G. O. Frolov. "Low-Temperature Thermionic Converters Based on Metal–Nanostructured Carbon Composites". METALLOFIZIKA I NOVEISHIE TEKHNOLOGII 42, n. 4 (30 giugno 2020): 451–70. http://dx.doi.org/10.15407/mfint.42.04.0451.
Testo completoMahan, G. D. "Thermionic refrigeration". Journal of Applied Physics 76, n. 7 (ottobre 1994): 4362–66. http://dx.doi.org/10.1063/1.357324.
Testo completoGawkowski, Kamil, e Jarosław Sikora. "Selected methods of converting solar energy into electricity - comparative analysis". E3S Web of Conferences 49 (2018): 00029. http://dx.doi.org/10.1051/e3sconf/20184900029.
Testo completoZhang, Xin, Zhuolin Ye, Shanhe Su e Jincan Chen. "Thermionic-Thermoradiative Converters". IEEE Electron Device Letters 39, n. 9 (settembre 2018): 1429–32. http://dx.doi.org/10.1109/led.2018.2859797.
Testo completoMahan, G. D., e L. M. Woods. "Multilayer Thermionic Refrigeration". Physical Review Letters 80, n. 18 (4 maggio 1998): 4016–19. http://dx.doi.org/10.1103/physrevlett.80.4016.
Testo completoLarsson, Magnus, Vadim B. Antonyuk, A. G. Mal shukov, Zhongshui Ma e K. A. Chao. "Thermionic current reversal". Journal of Physics A: Mathematical and General 35, n. 35 (20 agosto 2002): L531—L534. http://dx.doi.org/10.1088/0305-4470/35/35/102.
Testo completoPerng, D. C., D. A. Crewe e A. D. Feinerman. "Micromachined thermionic emitters". Journal of Micromechanics and Microengineering 2, n. 1 (1 marzo 1992): 25–30. http://dx.doi.org/10.1088/0960-1317/2/1/006.
Testo completoHETRICK, ROBERT E., e A. L. SCHAMP. "Thermionic Gas Sensor". Combustion Science and Technology 96, n. 1-3 (gennaio 1994): 23–31. http://dx.doi.org/10.1080/00102209408935344.
Testo completoRosul, Md Golam, Doeon Lee, David H. Olson, Naiming Liu, Xiaoming Wang, Patrick E. Hopkins, Kyusang Lee e Mona Zebarjadi. "Thermionic transport across gold-graphene-WSe2 van der Waals heterostructures". Science Advances 5, n. 11 (novembre 2019): eaax7827. http://dx.doi.org/10.1126/sciadv.aax7827.
Testo completoKlyuev, Alexey V., Arkady V. Yakimov e Irene S. Zhukova. "1/f Noise in Ti–Au/n-Type GaAs Schottky Barrier Diodes". Fluctuation and Noise Letters 14, n. 03 (29 giugno 2015): 1550029. http://dx.doi.org/10.1142/s0219477515500297.
Testo completoÖzden, Şadan, Cem Tozlu e Osman Pakma. "Temperature Dependent Electrical Transport in Al/Poly(4-vinyl phenol)/p-GaAs Metal-Oxide-Semiconductor by Sol-Gel Spin Coating Method". International Journal of Photoenergy 2016 (2016): 1–5. http://dx.doi.org/10.1155/2016/6157905.
Testo completoXie, Kan, Steven Allen Hartz e Virginia M. Ayres. "Thermionic Field Emission Transport at Nanowire Schottky Barrier Contacts". MRS Proceedings 1785 (2015): 19–25. http://dx.doi.org/10.1557/opl.2015.605.
Testo completoLowke, J. J., e J. C. Quartel. "Use of Transport Coefficients to Calculate Properties of Electrode Sheaths of Electric Arcs". Australian Journal of Physics 50, n. 3 (1997): 539. http://dx.doi.org/10.1071/p96089.
Testo completoPromros, Nathaporn, Suguru Funasaki, Motoki Takahara, Ryūhei Iwasaki, Mahmoud Shaban e Tsuyoshi Yoshitake. "Diode Parameters of Mesa Structural n-Type Nanocrystalline FeSi2/p-Type Si Heterojunctions Prepared by Lift-Off Photolithography". Advanced Materials Research 1103 (maggio 2015): 91–96. http://dx.doi.org/10.4028/www.scientific.net/amr.1103.91.
Testo completoZuber, J. W., e C. Zhang. "Anisotropic thermionic response of Weyl semimetals with application in thermionic cooling". Journal of Applied Physics 128, n. 12 (28 settembre 2020): 125101. http://dx.doi.org/10.1063/5.0025078.
Testo completoBORDAS, C., B. BAGUENARD, B. CLIMEN, F. LÉPINE, F. PAGLIARULO, M. A. LEBEAULT e J. WILLS. "TIME AND ENERGY-RESOLVED THERMIONIC EMISSION IN CARBON CLUSTERS". International Journal of Modern Physics B 19, n. 15n17 (10 luglio 2005): 2899–909. http://dx.doi.org/10.1142/s0217979205031882.
Testo completoVoronovych, Daniil, Anatoliy Taran, Oksana Podshyvalova, Natalya Shitsevalova, Volodymyr Filipov e Anatoliy Dukhnenko. "Thermionic Emission of Yttrium Dodecaboride Single Crystal". Solid State Phenomena 289 (aprile 2019): 47–52. http://dx.doi.org/10.4028/www.scientific.net/ssp.289.47.
Testo completoPan, J., A. Gaibrois, M. Marripelly, J. Leung, S. Suko, M. Lee e T. Knight. "Effects of Very High Workfunction Metals or Metal Alloys (NiCr) on High Switching Speed, HV Schottky Diodes for Mixed Signal or RF ASIC". MRS Advances 5, n. 37-38 (2020): 1937–46. http://dx.doi.org/10.1557/adv.2020.336.
Testo completoKumar, Niraj, Anjana Kumari, Manisha Samarth, Rajiv Kumar e Tarun Dey. "Analytical Studies of Metal Insulator Semiconductor Schottky Barrier Diodes". Material Science Research India 11, n. 2 (3 novembre 2014): 121–27. http://dx.doi.org/10.13005/msri/110205.
Testo completoRead, Frank H., e Nicholas J. Bowring. "Simulation of thermionic cathodes". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 531, n. 3 (ottobre 2004): 407–15. http://dx.doi.org/10.1016/j.nima.2004.05.092.
Testo completoWaldhauser, W., C. Mitterer, J. Laimer e H. Störi. "Sputtered thermionic hexaboride coatings". Surface and Coatings Technology 98, n. 1-3 (gennaio 1998): 1315–23. http://dx.doi.org/10.1016/s0257-8972(97)00263-6.
Testo completoXuan, X. C. "Combined thermionic-thermoelectric refrigerator". Journal of Applied Physics 92, n. 8 (15 ottobre 2002): 4746–50. http://dx.doi.org/10.1063/1.1509101.
Testo completoShakouri, Ali, e John E. Bowers. "Heterostructure integrated thermionic coolers". Applied Physics Letters 71, n. 9 (settembre 1997): 1234–36. http://dx.doi.org/10.1063/1.119861.
Testo completoDatas, A. "Hybrid thermionic-photovoltaic converter". Applied Physics Letters 108, n. 14 (4 aprile 2016): 143503. http://dx.doi.org/10.1063/1.4945712.
Testo completoRasor, N. S. "Thermionic energy conversion plasmas". IEEE Transactions on Plasma Science 19, n. 6 (1991): 1191–208. http://dx.doi.org/10.1109/27.125041.
Testo completoLushkin, O. Ye. "On Efficient Thermionic Cathodes". Ukrainian Journal of Physics 60, n. 1 (gennaio 2015): 74–90. http://dx.doi.org/10.15407/ujpe60.01.0074.
Testo completoWalder, Gerhard, e Olof Echt. "THERMIONIC EMISSION FROM FULLERENES". International Journal of Modern Physics B 06, n. 23n24 (dicembre 1992): 3881–91. http://dx.doi.org/10.1142/s0217979292001961.
Testo completoVezirov, Kh N. "Thermionic emission galvanomagnetic effect". Technical Physics Letters 24, n. 1 (gennaio 1998): 69–70. http://dx.doi.org/10.1134/1.1261998.
Testo completoWalder, Gerhard, Keith W. Kennedy e Olof Echt. "Thermionic emission from fullerenes". Zeitschrift f�r Physik D Atoms, Molecules and Clusters 26, S1 (marzo 1993): 288–90. http://dx.doi.org/10.1007/bf01425693.
Testo completoTaran, A. "Thermionic emission of LaB6-ZrB2 quasi-binary eutectic alloy with different ZrB2 fibers orientation". Functional Materials 20, n. 4 (25 dicembre 2013): 485–88. http://dx.doi.org/10.15407/fm20.04.485.
Testo completoZhang, Wenwen, Wenxi Tian, Suizheng Qiu, Guanghui Su e Dalin Zhang. "ICONE23-1792 DEVELOPMENT OF TRANSIENT THERMAL-HYDRAULIC ANALYSIS CODE FOR THE SPACE THERMIONIC REACTOR". Proceedings of the International Conference on Nuclear Engineering (ICONE) 2015.23 (2015): _ICONE23–1—_ICONE23–1. http://dx.doi.org/10.1299/jsmeicone.2015.23._icone23-1_381.
Testo completoRathkey, Doug. "Evolution and Comparison of Electron Sources". Microscopy Today 1, n. 4 (giugno 1993): 16–17. http://dx.doi.org/10.1017/s1551929500067432.
Testo completoShida, João, Fangjian Wu, Eric Spieglan e Mesut Çalışkan. "Tungsten Thermionic Emission as a Gauge for Low Pressures of Cesium Vapor". Instruments 4, n. 4 (5 novembre 2020): 34. http://dx.doi.org/10.3390/instruments4040034.
Testo completoChristian, George, Menno Kappers, Fabien Massabuau, Colin Humphreys, Rachel Oliver e Philip Dawson. "Effects of a Si-doped InGaN Underlayer on the Optical Properties of InGaN/GaN Quantum Well Structures with Different Numbers of Quantum Wells". Materials 11, n. 9 (15 settembre 2018): 1736. http://dx.doi.org/10.3390/ma11091736.
Testo completoMisra, Shikha, M. Upadhyay Kahaly e S. K. Mishra. "Thermionic emission from monolayer graphene, sheath formation and its feasibility towards thermionic converters". Journal of Applied Physics 121, n. 6 (14 febbraio 2017): 065102. http://dx.doi.org/10.1063/1.4975788.
Testo completoWang, Yuwei, Gongtao Wu, Li Xiang, Mengmeng Xiao, Zhiwei Li, Song Gao, Qing Chen e Xianlong Wei. "Single-walled carbon nanotube thermionic electron emitters with dense, efficient and reproducible electron emission". Nanoscale 9, n. 45 (2017): 17814–20. http://dx.doi.org/10.1039/c7nr05388f.
Testo completoKhrapko, V. Yu. "The Concept of the Combined Thermal Protection System for Leading Edges of Hypersonic Vehicles with Use of Thermionic Emission". KnE Engineering 3, n. 3 (21 febbraio 2018): 465. http://dx.doi.org/10.18502/keg.v3i3.1647.
Testo completoXu, Jin Jin, Zhong Zhu Gu, Xiao Li Xi, Wei Min Dai e Juan Juan Liu. "Loss Mechanism of Rare-Earth Tungsten Cathode Applied to High-Temperature Electrostatic Precipitation". Advanced Materials Research 113-116 (giugno 2010): 908–12. http://dx.doi.org/10.4028/www.scientific.net/amr.113-116.908.
Testo completoWang, Wei Jun, Bo Chen, Jian Ping Zheng, Hua Zhen Lei, Li Jun Qi e Jun Zhao. "Study on Sorption Behavior of Cesium by Graphite". Materials Science Forum 847 (marzo 2016): 50–55. http://dx.doi.org/10.4028/www.scientific.net/msf.847.50.
Testo completoDatas, A., e R. Vaillon. "Thermionic-enhanced near-field thermophotovoltaics". Nano Energy 61 (luglio 2019): 10–17. http://dx.doi.org/10.1016/j.nanoen.2019.04.039.
Testo completoMaruyama, S., M. Y. Lee, R. E. Haufler, Y. Chai e R. E. Smalley. "Thermionic emission from giant fullerenes". Zeitschrift f�r Physik D Atoms, Molecules and Clusters 19, n. 1-4 (marzo 1991): 409–12. http://dx.doi.org/10.1007/bf01448340.
Testo completo