Indice
Letteratura scientifica selezionata sul tema "Théorie gyrocinétique"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Théorie gyrocinétique".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Tesi sul tema "Théorie gyrocinétique"
De, Guillebon Loïc. "Réductions hamiltoniennes en physique des plasmas autour de la gyrocinétique intrinsèque". Phd thesis, Aix-Marseille Université, 2013. http://tel.archives-ouvertes.fr/tel-00850139.
Testo completoDe, guillebon de resnes Loic. "Réductions hamiltoniennes en physique des plasmas autour de la gyrocinétique intrinsèque". Thesis, Aix-Marseille, 2013. http://www.theses.fr/2013AIXM4038.
Testo completoGyrokinetics is a key model for plasma micro-turbulence. It still suffers from several issues, which could imply to reconsider the equations. This thesis dissertation clarifies three of them. First, one of the coordinates caused questions, both from a physical and from a mathematical point of view; a suitable constrained coordinate is introduced, which removes the issues from the theory and explains the intrinsic structures underlying the questions. Second, explicit induction relations are obtained to go arbitrary order in the perturbative expansion. Third, using the Hamiltonian structure of the dynamics, the coupling between the plasma and the electromagnetic field is implemented in a more appropriate way, with strong consequences on the gyrokinetic equations. Several other results are obtained, for instance about the origin of the guiding-center adiabatic invariant, about a very efficient minimal guiding-center transformation, or about an intermediate Hamiltonian model between Vlasov-Maxwell and gyrokinetics, where the characteristics include both the slow guiding-center dynamics and the fast gyro-angle dynamics. In addition, various reduction methods are used, introduced or developed, e.g. a Lie-transform of the equations of motion, a litfing method to transfer particle reductions to the corresponding Hamiltonian field dynamics, or a truncation method related both to Dirac's theory of constraints and to projections onto Lie-subalgebras. Besides gyrokinetics, this is useful to clarify other Hamiltonian reductions in plasma physics, e.g. for incompressible or electrostatic dynamics, for magnetohydrodynamics, or for fluid closures including moments of order two
Emeriau-Viard, Constance. "Turbulence plasma dans les étoiles et les tokamaks : magnétisme, auto-organisation et transport". Thesis, Sorbonne Paris Cité, 2017. http://www.theses.fr/2017USPCC033/document.
Testo completoIn magnetized plasmas, the interaction between the turbulence, the magnetism and shearing at large scales plays an important role in the organization of plasma and on transport processes. This interaction and its consequences can be studied in the non-linear development with high performance numerical simulations and by a precise analysis (in real space and in spectral space) of the transport processes in plasmas. In this thesis, we focus on stellar and fusion plasmas.The first part introduces the fundamental concepts of plasma physics then the specificities of each type of plasma, with the magnetohydrodynamics and stellar evolution for stellar plasmas and gyrokinetic theory for fusion plasmas. The second part focuses on stellar plasmas. Thanks to 3D numerical simulations of GK stars with the ASH code, we study the influence o the Rossby number on convection. We characterize a transition at Ro = 1 between low Rossby numbers that have a solar-like differential rotation profile or a Jupiter-like profile, and high Rossby numbers that have an anti-solar rotation profile with an equator slower than the poles. Then we choose nine models that enable us to simulate the changes in magnetic field during stellar evolution, from the disk-locking phase to the solar age. During the pre main sequence (PMS), the stellar rotation rate and internal structure change drastically with the birth and growth of the radiative core. We observe that the magnetic energy globally increases when arriving on the zero age main sequence (ZAMS). The topology of the magnetic field becomes more and more complex with a slower dipolar component and a less axisymmetric magnetic field. This field is generated by a dynamo alpha-Omega for which the Omega effect becomes more and more predominant as the star ages from 1Myr to 50Myrs, i.e. the convective zone becomes shallower. The magnetic field contained into the radiative zone possesses a mixed poloidal-toroidal topology that satisfies the stability criteria of instabilities in stably stratified zones. Once arrived on the ZAMS, the internal structure of star settles down and the rotation rate is the only stellar parameter that changes during the main sequence (MS), the star being slowed down by magnetized winds. The slowdown of the star induces a decrease of the magnetic energy contained into the convective zone. We observe a transition of the differential rotation profile since the Rossby number is closer to 1 and thus we analyze the consequences on the topology and on the spectral transfer between the components of the dynamo magnetic field. The third part of this manuscript address the spectral transfers of energy at large scales in fusion plasmas. The use of the 5D gyrokinetic numerical code GYSELA enables us to simulate these avalanches. After a characterization of these transfers, in space and velocity, we use a spectral diagnostic on entropy to have a better understanding of their origin and dynamics. A causal relation ``turbulent heat flux --> temperature gradient --> shearing'' can be emphasize. Finally, by looking at the results we obtained, we discuss on the similarities between the two types of plasmas and propose some leads for future developments
Klein, Rudy. "Le modèle gyro-water-bag appliqué à l'étude des instabilités dans les plasmas magnétisés". Thesis, Nancy 1, 2009. http://www.theses.fr/2009NAN10134/document.
Testo completoThe study of microinstabilities that arises in these plasmas demands a kinetic description based on the Vlasov equation. Kinetic models being very demanding in computer ressources, an alternative approach lies in a systematic use of invariances properties in the studied systems, such as the invariance of the distribution function along the particle trajectories or the first magnetic moment invariance. In this framework, we make use of the water-bag model on a few problems: collisional drif-waves in magnetized plasma column, interchange instability, ion temperature gradient (ITG), and Rayleigh-Taylor instabilities in the core of tokamaks. The goal of these studies is to allow a better understanding of plasma turbulence and therefore contribute to the control of anomalous transport which degrades the confinment in the core of tokamaks
Lutz, Mathieu. "Etude mathématique et numérique d'un modèle gyrocinétique incluant des effets électromagnétiques pour la simulation d'un plasma de Tokamak". Thesis, Strasbourg, 2013. http://www.theses.fr/2013STRAD036/document.
Testo completoThis thesis is devoted to the study of charged particle beams under the action of strong magnetic fields. In addition to the external magnetic field, each particle is submitted to an electromagnetic field created by the particles themselves. In kinetic models, the particles are represented by a distribution function f(x,v,t) solution of the Vlasov equation. To determine the electromagnetic field, this equation is coupled with the Maxwell equations or with the Poisson equation. The strong magnetic field assumption is translated by a scaling wich introduces a singular perturbation parameter 1/ε
Ehrlacher, Charles. "Contribution des électrons cinétiques dans les plasmas de Tokamak". Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLX033/document.
Testo completoInstabilities, within fusion plasmas by magnetic confinement, develop turbulent structures with milli-centimetric scales. The resulting transport impacts the energy confinement time and, ultimately, the energy performance.In unimproved confinement regimes, ion-scale turbulence generally dominates this transport. This turbulence is carried by the ions, but also by a certain class of electrons, those trapped in the local mirrors of the magnetic field. Take into account their dynamics is important, especially since they are also responsible for particle transport.The aim of this thesis is to study the impact of electrons on the damping of "Geodesic Acoustic Modes" (GAM) on the one hand and the linear growth of the turbulence modes "Ion Temperature Gradients" (ITG) and "Trapped Electron Modes" (TEM) on the other hand.GAMs are oscillations at the acoustic frequency of the average electric potential on magnetic surfaces. They interact critically with micro-turbulence, particularly through their coupling to the motion of energetic particles in the plasma. ITG and TEM represent the 2 classes of dominant electrostatic instabilities in tokamak core plasmas. As such, they are supposed to control turbulent transport in the core.This study is therefore a preliminary step for the prediction of turbulent transport while taking into account the influence of electrons.The appropriate framework for describing this turbulence is the so-called "gyrokinetic" theory, which proceeds from a 6 dimensions (6D) to 4D + 1 phase space reduction invariant by an average of the fast cyclotron motion. The self-consistent problem couples the gyrokinetic equation for each species (ions and electrons) to the Maxwell equations.The development of this kinetic model, built as an autonomous extension of the extsc{Gysela} code whose basic version gives an adiabatic response to electrons, consists in adding the treatment of the electron distribution function. Taking kinetic electrons into account is costly numerically. Three strategies are envisaged to reduce this cost: (i) consider "heavy electrons", (ii) filter electrons so as to keep only the trapped ones, and (iii) adapt the coordinates to decouple the parallel dynamics (fast) and the transverse one (slow) to the magnetic field.After a presentation of both the gyrokinetic model and some characteristics of the extsc{Gysela} code, we expose the adiabatic electrons model as it is implemented in extsc{Gysela} and introduce two new models: the "Full Kinetic Electrons" model in which electrons are treated kinetically in the same way as the ions and the "Trapped Kinetic Electrons" model in which only the trapped electrons are kinetic, the passing electrons receiving an adiabatic treatment. It is found that electrons generate an over-damping of the GAM explained by a resonant interaction between the bounce frequency of some trapped electrons and that of the GAMs.This damping depends on the electron-ion mass ratio and evolves as $(m_i/m_e)^{-1/2}$. For linear simulations on interchange instability, we find that the ITG modes are dominant over the TEM modes for large ion temperature gradients and vice versa, at finite electron temperature gradient. A satisfying agreement is obtained with the gyrokinetic code GT5D whose results have just been published. Finally, we give some suggestions for future simulations to build non linear cases that could enable to study the influence of kinetic electrons on turbulent transport
Drouot, Thomas. "Étude de la turbulence liée aux particules piégées dans les plasmas de fusion". Thesis, Université de Lorraine, 2015. http://www.theses.fr/2015LORR0150/document.
Testo completoIn tokamak plasmas, it is recognized that ion and electron micro- instabilities are held responsible for turbulence giving rise to anomalous transport. These limit particle and energy confinements in tokamak devices. This is the context of this work. The main objective is to have a better understanding of turbulence and thus of anomalous transport. It is known that the behaviour of trapped particles plays a major role in the development of turbulence via trapped ion mode (TIM) instability and trapped electron mode (TEM) instability. This work focus on the development of a model describing kinetic trapped particles (ions and electrons). The involved time scale is of the order of the trapped particle precession frequency which corresponds to characteristic frequency of TIM/TEM turbulence. The originality of this model is the reduction of the dimension from6D to 4D. This reduction is made by averaging over both the fast cyclotron motion and the bounce motion. In addition, using a set of action-angle variables allows one to deal with two parameters instead of two variables. The final model is 4D, dealing with two parameters and 2D space coordinates. The temperature and density gradients which trigger TIM and TEM instabilities are given by the linear analysis of the model. This analysis allows us to calculate the growth rates and frequencies associated with these instabilities. In order to solve the non-linear model describing both trapped kinetic ions and trapped kinetic electrons, we use the existing global code TERESA 4D including only trapped kinetic ions. The spatial and temporal scales associated to TIM and TEM turbulence are of the same order of magnitude. It allows us to include trapped electron kinetic response with very low numerical cost compared to the existing version. The TIM/TEM turbulence can be generated by this new code with low computational resources. Different typical structures observed in tokamak can be studied. This is the case of zonal flow and streamer structures which play a major role in anomalous transport. Finally, the influence of different parameters, such as banana width or electron to ion temperature ratio, is considered
Xu, Shaokang. "Study of reduced kinetic models for plasma turbulence". Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLX057/document.
Testo completoTurbulent transport is one of the keys to improve the energy confinement time required for thermonuclear fusion reactors. The description of the kinetic turbulence of the plasma is a problem with 3 spatial coordinates and 3 velocity coordinates. Both theory and simulation of a problem of such high dimensionality are very difficult, and reduced models are helpfull to understand turbulence in Tokamaks. A widely used technique consists into averaging the cyclotron motion, which is much faster than the turbulence time scale. Such a reduction makes it possible to simplify the problem to three spatial coordinates of the particle guide centers, a parallel velocity or energy, and a perpendicular velocity appearing as the adiabatic invariant. Nonlinear gyrokinetic description requires massively parallel high performance numerical simulations. The difficulty lies in the non-linear terms (Poisson hooks) that describe multi-scale interactions, which is a challenge for both theory and simulation. Any reduced approach, based on well-controlled hypotheses, is therefore interesting to develop.On the basis of this ambition, this thesis concerns the turbulence of particles trapped in magnetized plasma. It is a 4D system, obtained after averaging the particle distribution function on cyclotron and bounce motions, which can be considered as a reduced form of standard gyrokinetic theory. We called it "bounce averaged gyrokinetics" during this work. Even if this description is greatly reduced compared to the gyrokinetic theory, nonlinear direct simulation remains a challenge.A description of the nonlinear polar coordinate terms is chosen, with a logarithmic grid along the norm of the wave vector, while the angles are discretized on a regular grid. The use of a logarithmic grid makes it possible to take into account a wide range of wave vectors, so physics on a very small scale. In a similar way to shell models for fluid turbulence, and in order to simplify the system, only the interactions between neighboring shells are considered.In a first step, the study of the linear system is presented, in particular the paraetric dependence of the instability thresholds and the linear growth rate, allowing to recover the strong anisotropy of the growth rates of the trapped ion modes (or TIM) and the modes of trapped electrons (or TEM). These studies also make it possible to validate the non-linear numerical codes with respect to an independently developer eigenvalue solver.In a second step, the isotropic hypothesis for nonlinear terms is used. Thus, there is no exact phase information for such 1D layer models, which leaves with a free parameter in the interaction coefficients. An original power law is evidenced, which is unaffected by the value of the free parameter, measuring the intensity of the nonlinear effects relative to the linear terms.From the simulation of the isotropic model, the phase information appears very important. Since the linear instability is anisotropic for the fusion, the simulation of the anisotropic model is thus carried out in a third time. The numerically resolved system is reduced to a kinetic species, assuming that the other species are adiabatic. Two different systems can thus be studied: kinetic ions + adiabatic electrons and kinetic electrons + adiabatic ions. Different spectra are observed in each of these two cases, and the validity of the adiabatic hypothesis is discussed for each species, based on a kinetic simulation with two species
Han-Kwan, Daniel. "Contribution à l'étude mathématique des plasmas fortement magnétisés". Phd thesis, Université Pierre et Marie Curie - Paris VI, 2011. http://tel.archives-ouvertes.fr/tel-00615169.
Testo completoSteiner, Christophe. "Résolution numérique de l'opérateur de gyromoyenne, schémas d'advection et couplage : applications à l'équation de Vlasov". Thesis, Strasbourg, 2014. http://www.theses.fr/2014STRAD033/document.
Testo completoThis thesis proposes and analyzes numerical methods for solving the Vlasov equation. This equation models the evolution of a species of charged particles under the effet of an electromagnetic field. The first part is devoted to a mathematical analysis of semi-Lagrangian schemes solving the linear transport equation which is the basic building block of directional splitting methods.Solving methods for the Vlasov equation coupled to the Poisson equation, in the case where only the electric field is considered, are optimized in the second part. This optimization relates to the time of calculation by the use of Graphics Processing Unit (GPU) and the use of an inhomogeneous mesh.In the third and final part, we study a numerical method for calculating the gyroaverage operator involved in gyrokinetic theory. This method will be applied to solve the quasi-neutrality equation