Segui questo link per vedere altri tipi di pubblicazioni sul tema: Théorèmes de restriction de Fourier.

Articoli di riviste sul tema "Théorèmes de restriction de Fourier"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "Théorèmes de restriction de Fourier".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.

1

Kovač, Vjekoslav. "Fourier restriction implies maximal and variational Fourier restriction". Journal of Functional Analysis 277, n. 10 (novembre 2019): 3355–72. http://dx.doi.org/10.1016/j.jfa.2019.03.015.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Demeter, Ciprian, e S. Zubin Gautam. "Bilinear Fourier Restriction Theorems". Journal of Fourier Analysis and Applications 18, n. 6 (6 giugno 2012): 1265–90. http://dx.doi.org/10.1007/s00041-012-9230-9.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Demeter, Ciprian. "Bourgain’s work in Fourier restriction". Bulletin of the American Mathematical Society 58, n. 2 (27 gennaio 2021): 191–204. http://dx.doi.org/10.1090/bull/1717.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Kovač, Vjekoslav, e Diogo Oliveira e Silva. "A variational restriction theorem". Archiv der Mathematik 117, n. 1 (7 maggio 2021): 65–78. http://dx.doi.org/10.1007/s00013-021-01604-1.

Testo completo
Abstract (sommario):
AbstractWe establish variational estimates related to the problem of restricting the Fourier transform of a three-dimensional function to the two-dimensional Euclidean sphere. At the same time, we give a short survey of the recent field of maximal Fourier restriction theory.
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Shayya, Bassam. "Fourier restriction in low fractal dimensions". Proceedings of the Edinburgh Mathematical Society 64, n. 2 (30 aprile 2021): 373–407. http://dx.doi.org/10.1017/s0013091521000201.

Testo completo
Abstract (sommario):
AbstractLet $S \subset \mathbb {R}^{n}$ be a smooth compact hypersurface with a strictly positive second fundamental form, $E$ be the Fourier extension operator on $S$, and $X$ be a Lebesgue measurable subset of $\mathbb {R}^{n}$. If $X$ contains a ball of each radius, then the problem of determining the range of exponents $(p,q)$ for which the estimate $\| Ef \|_{L^{q}(X)} \lesssim \| f \|_{L^{p}(S)}$ holds is equivalent to the restriction conjecture. In this paper, we study the estimate under the following assumption on the set $X$: there is a number $0 < \alpha \leq n$ such that $|X \cap B_R| \lesssim R^{\alpha }$ for all balls $B_R$ in $\mathbb {R}^{n}$ of radius $R \geq 1$. On the left-hand side of this estimate, we are integrating the function $|Ef(x)|^{q}$ against the measure $\chi _X \,{\textrm {d}}x$. Our approach consists of replacing the characteristic function $\chi _X$ of $X$ by an appropriate weight function $H$, and studying the resulting estimate in three different regimes: small values of $\alpha$, intermediate values of $\alpha$, and large values of $\alpha$. In the first regime, we establish the estimate by using already available methods. In the second regime, we prove a weighted Hölder-type inequality that holds for general non-negative Lebesgue measurable functions on $\mathbb {R}^{n}$ and combine it with the result from the first regime. In the third regime, we borrow a recent fractal Fourier restriction theorem of Du and Zhang and combine it with the result from the second regime. In the opposite direction, the results of this paper improve on the Du–Zhang theorem in the range $0 < \alpha < n/2$.
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Drury, S. W., e B. P. Marshall. "Fourier restriction theorems for degenerate curves". Mathematical Proceedings of the Cambridge Philosophical Society 101, n. 3 (maggio 1987): 541–53. http://dx.doi.org/10.1017/s0305004100066901.

Testo completo
Abstract (sommario):
Fourier restriction theorems contain estimates of the formwhere σ is a measure on a smooth manifold M in ∝n. This paper is a continuation of [5], which considered this problem for certain degenerate curves in ∝n. Here estimates are obtained for all curves with degeneracies of finite order. References to previous work on this problem may be found in [5].
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Bruce, Benjamin Baker. "Fourier restriction to a hyperbolic cone". Journal of Functional Analysis 279, n. 3 (agosto 2020): 108554. http://dx.doi.org/10.1016/j.jfa.2020.108554.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Carneiro, Emanuel, Diogo Oliveira e Silva e Mateus Sousa. "Extremizers for Fourier restriction on hyperboloids". Annales de l'Institut Henri Poincaré C, Analyse non linéaire 36, n. 2 (marzo 2019): 389–415. http://dx.doi.org/10.1016/j.anihpc.2018.06.001.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Nicola, Fabio. "Slicing surfaces and the Fourier restriction conjecture". Proceedings of the Edinburgh Mathematical Society 52, n. 2 (28 maggio 2009): 515–27. http://dx.doi.org/10.1017/s0013091507000995.

Testo completo
Abstract (sommario):
AbstractWe deal with the restriction phenomenon for the Fourier transform. We prove that each of the restriction conjectures for the sphere, the paraboloid and the elliptic hyperboloid in ℝn implies that for the cone in ℝn+1. We also prove a new restriction estimate for any surface in ℝ3 locally isometric to the plane and of finite type.
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Carbery, Anthony. "Restriction implies Bochner–Riesz for paraboloids". Mathematical Proceedings of the Cambridge Philosophical Society 111, n. 3 (maggio 1992): 525–29. http://dx.doi.org/10.1017/s0305004100075599.

Testo completo
Abstract (sommario):
Let Σ ⊆ ℝn be a (compact) hypersurface with non-vanishing Gaussian curvature, with suitable parameterizations, also called Σ: U → ℝn (U open patches in ℝn−1). The restriction problem for Σ is the question of the a priori estimate (for f ∈ S(ℝ))(^denoting the Fourier transform). The Bochner-Riesz problem for Σ is the question of whether the functionsdefine Lp-bounded Fourier multiplier operators on ℝn in the range.
Gli stili APA, Harvard, Vancouver, ISO e altri
11

Hu, Yi, e Xiaochun Li. "Discrete Fourier restriction associated with KdV equations". Analysis & PDE 6, n. 4 (21 agosto 2013): 859–92. http://dx.doi.org/10.2140/apde.2013.6.859.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
12

Mockenhaupt, Gerd. "A restriction theorem for the Fourier transform". Bulletin of the American Mathematical Society 25, n. 1 (1 luglio 1991): 31–37. http://dx.doi.org/10.1090/s0273-0979-1991-16018-0.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
13

Magyar, Ákos. "On Fourier restriction and the Newton polygon". Proceedings of the American Mathematical Society 137, n. 02 (26 agosto 2008): 615–25. http://dx.doi.org/10.1090/s0002-9939-08-09510-5.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
14

Stovall, Betsy. "Extremizability of Fourier restriction to the paraboloid". Advances in Mathematics 360 (gennaio 2020): 106898. http://dx.doi.org/10.1016/j.aim.2019.106898.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
15

Oliveira e Silva, Diogo. "Extremizers for Fourier restriction inequalities: Convex arcs". Journal d'Analyse Mathématique 124, n. 1 (ottobre 2014): 337–85. http://dx.doi.org/10.1007/s11854-014-0035-4.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
16

Hu, Yi, e Xiaochun Li. "Discrete Fourier restriction associated with Schrödinger equations". Revista Matemática Iberoamericana 30, n. 4 (2014): 1281–300. http://dx.doi.org/10.4171/rmi/815.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
17

Hickman, Jonathan, e Keith M. Rogers. "Improved Fourier restriction estimates in higher dimensions". Cambridge Journal of Mathematics 7, n. 3 (2019): 219–82. http://dx.doi.org/10.4310/cjm.2019.v7.n3.a1.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
18

Hickman, Jonathan, e James Wright. "An abstract $L^2$ Fourier restriction theorem". Mathematical Research Letters 26, n. 1 (2019): 75–100. http://dx.doi.org/10.4310/mrl.2019.v26.n1.a6.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
19

Carro, María, e Salvador Rodríguez. "New results on restriction of Fourier multipliers". Mathematische Zeitschrift 265, n. 2 (15 aprile 2009): 417–35. http://dx.doi.org/10.1007/s00209-009-0522-y.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
20

Hong, Guixiang, Xudong Lai e Liang Wang. "Fourier restriction estimates on quantum Euclidean spaces". Advances in Mathematics 430 (ottobre 2023): 109232. http://dx.doi.org/10.1016/j.aim.2023.109232.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
21

Lakey, Joseph D. "Weighted Restriction for Curves". Canadian Mathematical Bulletin 36, n. 1 (1 marzo 1993): 87–95. http://dx.doi.org/10.4153/cmb-1993-013-5.

Testo completo
Abstract (sommario):
AbstractWe prove weighted norm inequalities for the Fourier transform of the formwhere v is a nonnegative weight function on ℝd and ψ: [— 1,1 ] —> ℝd is a nondegenerate curve. Our results generalize unweighted (i.e. v = 1) restriction theorems of M. Christ, and two-dimensional weighted restriction theorems of C. Carton-Lebrun and H. Heinig.
Gli stili APA, Harvard, Vancouver, ISO e altri
22

Christ, Francis Michael, e Shuanglin Shao. "Existence of extremals for a Fourier restriction inequality". Analysis & PDE 5, n. 2 (27 agosto 2012): 261–312. http://dx.doi.org/10.2140/apde.2012.5.261.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
23

Stovall, Betsy. "Scale-invariant Fourier restriction to a hyperbolic surface". Analysis & PDE 12, n. 5 (1 gennaio 2019): 1215–24. http://dx.doi.org/10.2140/apde.2019.12.1215.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
24

Hickman, Jonathan. "AN AFFINE FOURIER RESTRICTION THEOREM FOR CONICAL SURFACES". Mathematika 60, n. 2 (13 dicembre 2013): 374–90. http://dx.doi.org/10.1112/s002557931300020x.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
25

Dendrinos, Spyridon. "Fourier Restriction of H1 Functions on Polynomial Surfaces". Journal of Fourier Analysis and Applications 13, n. 5 (ottobre 2007): 623–41. http://dx.doi.org/10.1007/s00041-006-6055-4.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
26

Mockenhaupt, G. "Salem sets and restriction properties of Fourier transforms". Geometric and Functional Analysis 10, n. 6 (dicembre 2000): 1579–87. http://dx.doi.org/10.1007/pl00001662.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
27

Chen, Xianghong. "A Fourier restriction theorem based on convolution powers". Proceedings of the American Mathematical Society 142, n. 11 (21 luglio 2014): 3897–901. http://dx.doi.org/10.1090/s0002-9939-2014-12148-4.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
28

Dendrinos, Spyridon, e James Wright. "Fourier restriction, polynomial curves and a geometric inequality". Comptes Rendus Mathematique 346, n. 1-2 (gennaio 2008): 45–48. http://dx.doi.org/10.1016/j.crma.2007.11.032.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
29

Bloom, Steven, e Gary Sampson. "Weighted spherical restriction theorems for the Fourier transform". Illinois Journal of Mathematics 36, n. 1 (marzo 1992): 73–101. http://dx.doi.org/10.1215/ijm/1255987608.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
30

Lai, Xudong, e Yong Ding. "A note on the discrete Fourier restriction problem". Proceedings of the American Mathematical Society 146, n. 9 (24 maggio 2018): 3839–46. http://dx.doi.org/10.1090/proc/13975.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
31

Foschi, D., e D. Oliveira e Silva. "Some recent progress on sharp Fourier restriction theory". Analysis Mathematica 43, n. 2 (giugno 2017): 241–65. http://dx.doi.org/10.1007/s10476-017-0306-2.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
32

Chen, Xianghong, e Andreas Seeger. "Convolution Powers of Salem Measures With Applications". Canadian Journal of Mathematics 69, n. 02 (aprile 2017): 284–320. http://dx.doi.org/10.4153/cjm-2016-019-6.

Testo completo
Abstract (sommario):
AbstractWe study the regularity of convolution powers for measures supported on Salemsets, and prove related results on Fourier restriction and Fourier multipliers. In particular we show that for α of the form d/n, n = 2, 3, … there exist α-Salem measures for which the L2Fourier restriction theorem holds in the range. The results rely on ideas of Körner. We extend some of his constructions to obtain upper regular α-Salem measures, with sharp regularity results forn-fold convolutions for all n ∈ ℕ.
Gli stili APA, Harvard, Vancouver, ISO e altri
33

Drury, S. W., e B. P. Marshall. "Fourier restriction theorems for curves with affine and Euclidean arclengths". Mathematical Proceedings of the Cambridge Philosophical Society 97, n. 1 (gennaio 1985): 111–25. http://dx.doi.org/10.1017/s0305004100062654.

Testo completo
Abstract (sommario):
Let M be a smooth manifold in . One may ask whether , the restriction of the Fourier transform of f to M makes sense for every f in . Since, for does not make sense pointwise, it is natural to introduce a measure σ on M and ask for an inequalityfor every f in (say) the Schwartz class. Results of this kind are called restriction theorems. An excellent survey article on this subject is to be found in Tomas[13].
Gli stili APA, Harvard, Vancouver, ISO e altri
34

Ramos, Joao. "Low-Dimensional maximal restriction principles for the Fourier transform". Indiana University Mathematics Journal 71, n. 1 (2022): 339–57. http://dx.doi.org/10.1512/iumj.2022.71.8800.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
35

Christ, Michael, e René Quilodrán. "Gaussians rarely extremize adjoint Fourier restriction inequalities for paraboloids". Proceedings of the American Mathematical Society 142, n. 3 (23 dicembre 2013): 887–96. http://dx.doi.org/10.1090/s0002-9939-2013-11827-7.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
36

Buschenhenke, Stefan, Detlef Müller e Ana Vargas. "A Fourier restriction theorem for a perturbed hyperbolic paraboloid". Proceedings of the London Mathematical Society 120, n. 1 (5 agosto 2019): 124–54. http://dx.doi.org/10.1112/plms.12286.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
37

Spyridon Dendrinos e James Wright. "Fourier restriction to polynomial curves I: a geometric inequality". American Journal of Mathematics 132, n. 4 (2010): 1031–76. http://dx.doi.org/10.1353/ajm.0.0127.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
38

Oberlin, Daniel M. "A uniform estimate for Fourier restriction to simple curves". Proceedings of the American Mathematical Society 137, n. 12 (4 agosto 2009): 4227–42. http://dx.doi.org/10.1090/s0002-9939-09-10047-3.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
39

Oberlin, Daniel M. "Fourier restriction for affine arclength measures in the plane". Proceedings of the American Mathematical Society 129, n. 11 (2 aprile 2001): 3303–5. http://dx.doi.org/10.1090/s0002-9939-01-06012-9.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
40

Chen, Xianghong, Dashan Fan e Lifeng Wang. "Restriction of the Fourier Transform to Some Oscillating Curves". Journal of Fourier Analysis and Applications 24, n. 4 (5 luglio 2017): 1141–59. http://dx.doi.org/10.1007/s00041-017-9554-6.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
41

Foschi, Damiano. "Global maximizers for the sphere adjoint Fourier restriction inequality". Journal of Functional Analysis 268, n. 3 (febbraio 2015): 690–702. http://dx.doi.org/10.1016/j.jfa.2014.10.015.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
42

Christ, Michael, e Shuanglin Shao. "On the extremizers of an adjoint Fourier restriction inequality". Advances in Mathematics 230, n. 3 (giugno 2012): 957–77. http://dx.doi.org/10.1016/j.aim.2012.03.020.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
43

De Carli, Laura, Dmitry Gorbachev e Sergey Tikhonov. "Pitt inequalities and restriction theorems for the Fourier transform". Revista Matemática Iberoamericana 33, n. 3 (2017): 789–808. http://dx.doi.org/10.4171/rmi/955.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
44

Bak, Jong-Guk, e Seheon Ham. "Restriction of the Fourier transform to some complex curves". Journal of Mathematical Analysis and Applications 409, n. 2 (gennaio 2014): 1107–27. http://dx.doi.org/10.1016/j.jmaa.2013.07.073.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
45

Zhang, Yunfeng. "On Fourier restriction type problems on compact Lie groups". Indiana University Mathematics Journal 72, n. 6 (2023): 2631–99. http://dx.doi.org/10.1512/iumj.2023.72.9317.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
46

Drury, S. W., e K. Guo. "Some remarks on the restriction of the Fourier transform to surfaces". Mathematical Proceedings of the Cambridge Philosophical Society 113, n. 1 (gennaio 1993): 153–59. http://dx.doi.org/10.1017/s0305004100075848.

Testo completo
Abstract (sommario):
AbstractFor a class of kernels, we prove the Lp estimate for the exotic Riesz potential, with which a restriction theorem of the Fourier transform to surfaces of half the ambient dimension is proved. A simpler proof of Barcelo's result is given. We also find that it is possible to combine the Hausdorff–Young theorem with the Fefferman–Zygmund method to prove some optimal results on the restriction theorem.
Gli stili APA, Harvard, Vancouver, ISO e altri
47

Oberlin, Daniel M. "A Restriction Theorem for a k-Surface in ℝn". Canadian Mathematical Bulletin 48, n. 2 (1 giugno 2005): 260–66. http://dx.doi.org/10.4153/cmb-2005-024-9.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
48

Barceló, Bartolomé. "On the restriction of the Fourier transform and Fourier series to circles of lacunary radii". Rendiconti del Circolo Matematico di Palermo 35, n. 3 (settembre 1986): 330–48. http://dx.doi.org/10.1007/bf02843902.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
49

Rodríguez-López, Salvador. "Restriction results for multilinear multipliers in weighted settings". Proceedings of the Royal Society of Edinburgh: Section A Mathematics 145, n. 2 (aprile 2015): 391–409. http://dx.doi.org/10.1017/s0308210513000164.

Testo completo
Abstract (sommario):
We obtain restriction results of de Leeuw’s type for maximal operators defined through multilinear Fourier multipliers of either strong or weak type acting on weighted Lebesgue spaces. We give some applications of our development. In particular, we obtain periodic weighted results for Coifman–Meyer-, Hörmander- and Hörmander–Mihlin-type multilinear multipliers.
Gli stili APA, Harvard, Vancouver, ISO e altri
50

Grünrock, Axel, e Sebastian Herr. "The Fourier restriction norm method for the Zakharov-Kuznetsov equation". Discrete & Continuous Dynamical Systems - A 34, n. 5 (2014): 2061–68. http://dx.doi.org/10.3934/dcds.2014.34.2061.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!

Vai alla bibliografia