Articoli di riviste sul tema "TD2 prediction"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "TD2 prediction".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.
Ramani, A. L. "Prediction of First Lactation Milk Yield on The Basis of Test Day Yield Using Multiple Linear Regression in Gir Cows". Indian Journal of Pure & Applied Biosciences 12, n. 3 (30 giugno 2024): 33–36. http://dx.doi.org/10.18782/2582-2845.9086.
Testo completoRíos, Rafael, Carmen Belén Lupiañez, Daniele Campa, Alessandro Martino, Joaquin Martínez-López, Manuel Martínez-Bueno, Judit Varkonyi et al. "Type 2 diabetes-related variants influence the risk of developing multiple myeloma: results from the IMMEnSE consortium". Endocrine-Related Cancer 22, n. 4 (agosto 2015): 545–59. http://dx.doi.org/10.1530/erc-15-0029.
Testo completoKlein, Matthias S., e Jane Shearer. "Metabolomics and Type 2 Diabetes: Translating Basic Research into Clinical Application". Journal of Diabetes Research 2016 (2016): 1–10. http://dx.doi.org/10.1155/2016/3898502.
Testo completoLuo, Yufang, Zi Guo, Honghui He, Youbo Yang, Shaoli Zhao e Zhaohui Mo. "Predictive Model of Type 2 Diabetes Remission after Metabolic Surgery in Chinese Patients". International Journal of Endocrinology 2020 (8 ottobre 2020): 1–13. http://dx.doi.org/10.1155/2020/2965175.
Testo completoOrtiz Zuñiga, Angel Michael, Rafael Simó, Octavio Rodriguez-Gómez, Cristina Hernández, Adrian Rodrigo, Laura Jamilis, Laura Campo, Montserrat Alegret, Merce Boada e Andreea Ciudin. "Clinical Applicability of the Specific Risk Score of Dementia in Type 2 Diabetes in the Identification of Patients with Early Cognitive Impairment: Results of the MOPEAD Study in Spain". Journal of Clinical Medicine 9, n. 9 (24 agosto 2020): 2726. http://dx.doi.org/10.3390/jcm9092726.
Testo completoVettoretti, Martina, Enrico Longato, Alessandro Zandonà, Yan Li, José Antonio Pagán, David Siscovick, Mercedes R. Carnethon, Alain G. Bertoni, Andrea Facchinetti e Barbara Di Camillo. "Addressing practical issues of predictive models translation into everyday practice and public health management: a combined model to predict the risk of type 2 diabetes improves incidence prediction and reduces the prevalence of missing risk predictions". BMJ Open Diabetes Research & Care 8, n. 1 (luglio 2020): e001223. http://dx.doi.org/10.1136/bmjdrc-2020-001223.
Testo completoWen, Min, Song Yang, Augustin Vintzileos, Wayne Higgins e Renhe Zhang. "Impacts of Model Resolutions and Initial Conditions on Predictions of the Asian Summer Monsoon by the NCEP Climate Forecast System". Weather and Forecasting 27, n. 3 (1 giugno 2012): 629–46. http://dx.doi.org/10.1175/waf-d-11-00128.1.
Testo completoKumar, Mukkesh, Li Ting Ang, Cindy Ho, Shu E. Soh, Kok Hian Tan, Jerry Kok Yen Chan, Keith M. Godfrey et al. "Machine Learning–Derived Prenatal Predictive Risk Model to Guide Intervention and Prevent the Progression of Gestational Diabetes Mellitus to Type 2 Diabetes: Prediction Model Development Study". JMIR Diabetes 7, n. 3 (5 luglio 2022): e32366. http://dx.doi.org/10.2196/32366.
Testo completoDi Camillo, Barbara, Liisa Hakaste, Francesco Sambo, Rafael Gabriel, Jasmina Kravic, Bo Isomaa, Jaakko Tuomilehto et al. "HAPT2D: high accuracy of prediction of T2D with a model combining basic and advanced data depending on availability". European Journal of Endocrinology 178, n. 4 (aprile 2018): 331–41. http://dx.doi.org/10.1530/eje-17-0921.
Testo completoZhu, Jianlong, Dehui Guo, Liying Liu e Jing Zhong. "Serum Galectin-3 Predicts Mortality in Venoarterial Extracorporeal Membrane Oxygenation Patients". Cardiology Research and Practice 2023 (30 settembre 2023): 1–8. http://dx.doi.org/10.1155/2023/3917156.
Testo completoChikowore, Tinashe, Kenneth Ekoru, Marijana Vujkovi, Dipender Gill, Fraser Pirie, Elizabeth Young, Manjinder S. Sandhu et al. "Polygenic Prediction of Type 2 Diabetes in Africa". Diabetes Care 45, n. 3 (11 gennaio 2022): 717–23. http://dx.doi.org/10.2337/dc21-0365.
Testo completoPan, Dikang, Hui Wang, Sensen Wu, Jingyu Wang, Yachan Ning, Jianming Guo, Cong Wang e Yongquan Gu. "Unveiling the Hidden Burden: Estimating All-Cause Mortality Risk in Older Individuals with Type 2 Diabetes". Journal of Diabetes Research 2024 (20 gennaio 2024): 1–10. http://dx.doi.org/10.1155/2024/1741878.
Testo completoHa, Jane, Mi Jang, Yeongkeun Kwon, Young Suk Park, Do Joong Park, Joo-Ho Lee, Hyuk-Joon Lee et al. "Metabolomic Profiles Predict Diabetes Remission after Bariatric Surgery". Journal of Clinical Medicine 9, n. 12 (1 dicembre 2020): 3897. http://dx.doi.org/10.3390/jcm9123897.
Testo completoKurasawa, Hisashi, Kayo Waki, Tomohisa Seki, Akihiro Chiba, Akinori Fujino, Katsuyoshi Hayashi, Eri Nakahara, Tsuneyuki Haga, Takashi Noguchi e Kazuhiko Ohe. "Enhancing Type 2 Diabetes Treatment Decisions With Interpretable Machine Learning Models for Predicting Hemoglobin A1c Changes: Machine Learning Model Development". JMIR AI 3 (18 luglio 2024): e56700. http://dx.doi.org/10.2196/56700.
Testo completoGuasch-Ferré, Marta, Miguel Ruiz-Canela, Jun Li, Yan Zheng, Mònica Bulló, Dong D. Wang, Estefanía Toledo et al. "Plasma Acylcarnitines and Risk of Type 2 Diabetes in a Mediterranean Population at High Cardiovascular Risk". Journal of Clinical Endocrinology & Metabolism 104, n. 5 (13 novembre 2018): 1508–19. http://dx.doi.org/10.1210/jc.2018-01000.
Testo completoYANG, JIN MIN. "PROBING NEW PHYSICS FROM TOP QUARK FCNC PROCESS AT LHC: A MINI REVIEW". International Journal of Modern Physics A 23, n. 21 (20 agosto 2008): 3343–47. http://dx.doi.org/10.1142/s0217751x08042092.
Testo completoPapandreou, Christopher, Mònica Bulló, Miguel Ruiz-Canela, Courtney Dennis, Amy Deik, Daniel Wang, Marta Guasch-Ferré et al. "Plasma metabolites predict both insulin resistance and incident type 2 diabetes: a metabolomics approach within the Prevención con Dieta Mediterránea (PREDIMED) study". American Journal of Clinical Nutrition 109, n. 3 (23 febbraio 2019): 626–34. http://dx.doi.org/10.1093/ajcn/nqy262.
Testo completoFenton, G. A., e D. V. Griffiths. "Bearing-capacity prediction of spatially random c ϕ soils". Canadian Geotechnical Journal 40, n. 1 (1 febbraio 2003): 54–65. http://dx.doi.org/10.1139/t02-086.
Testo completoDeberneh, Henock M., e Intaek Kim. "Prediction of Type 2 Diabetes Based on Machine Learning Algorithm". International Journal of Environmental Research and Public Health 18, n. 6 (23 marzo 2021): 3317. http://dx.doi.org/10.3390/ijerph18063317.
Testo completoNixon, J. F. (Derick). "Discrete ice lens theory for frost heave beneath pipelines". Canadian Geotechnical Journal 29, n. 3 (1 giugno 1992): 487–97. http://dx.doi.org/10.1139/t92-053.
Testo completoZhang, Meilin, Li Zheng, Ping Li, Yufeng Zhu, Hong Chang, Xuan Wang, Weiqiao Liu, Yuwen Zhang e Guowei Huang. "4-Year Trajectory of Visceral Adiposity Index in the Development of Type 2 Diabetes: A Prospective Cohort Study". Annals of Nutrition and Metabolism 69, n. 2 (2016): 142–49. http://dx.doi.org/10.1159/000450657.
Testo completoFu, Yuanyuan, Ling Hu, Hong-Wei Ren, Yi Zuo, Shaoqiu Chen, Qiu-Shi Zhang, Chen Shao et al. "Prognostic Factors for COVID-19 Hospitalized Patients with Preexisting Type 2 Diabetes". International Journal of Endocrinology 2022 (17 gennaio 2022): 1–13. http://dx.doi.org/10.1155/2022/9322332.
Testo completoCao, Yang, Ingmar Näslund, Erik Näslund, Johan Ottosson, Scott Montgomery e Erik Stenberg. "Using a Convolutional Neural Network to Predict Remission of Diabetes After Gastric Bypass Surgery: Machine Learning Study From the Scandinavian Obesity Surgery Register". JMIR Medical Informatics 9, n. 8 (19 agosto 2021): e25612. http://dx.doi.org/10.2196/25612.
Testo completoSayyid, Hiba O., Salma A. Mahmood e Saad S. Hamadi. "A Comparative Analysis of Machine Learning Models for Predicting Thyroid Disorders in Type 1 and Type 2 Diabetic Patients". Basrah Researches Sciences 50, n. 2 (31 dicembre 2024): 193–203. https://doi.org/10.56714/bjrs.50.2.16.
Testo completoWu, Chung-Ze, Li-Ying Huang, Fang-Yu Chen, Chun-Heng Kuo e Dong-Feng Yeih. "Using Machine Learning to Predict Abnormal Carotid Intima-Media Thickness in Type 2 Diabetes". Diagnostics 13, n. 11 (23 maggio 2023): 1834. http://dx.doi.org/10.3390/diagnostics13111834.
Testo completoHu, W. P., Q. A. Shen, M. Zhang, Q. C. Meng e X. Zhang. "Corrosion–Fatigue Life Prediction for 2024-T62 Aluminum Alloy Using Damage Mechanics-Based Approach". International Journal of Damage Mechanics 21, n. 8 (21 dicembre 2011): 1245–66. http://dx.doi.org/10.1177/1056789511432791.
Testo completoG, Revathi, e Gnanambal Ilango. "Topological Approaches to Diabetes Prediction Using TDA". Journal of Research in Applied Mathematics 10, n. 9 (settembre 2024): 09–14. http://dx.doi.org/10.35629/0743-10090914.
Testo completoElhefnawy, Marwa Elsaeed, Siti Maisharah Sheikh Ghadzi e Sabariah Noor Harun. "Predictors Associated with Type 2 Diabetes Mellitus Complications over Time: A Literature Review". Journal of Vascular Diseases 1, n. 1 (4 agosto 2022): 13–23. http://dx.doi.org/10.3390/jvd1010003.
Testo completoAyensa-Vazquez, Jose Angel, Alfonso Leiva, Pedro Tauler, Angel Arturo López-González, Antoni Aguiló, Matías Tomás-Salvá e Miquel Bennasar-Veny. "Agreement between Type 2 Diabetes Risk Scales in a Caucasian Population: A Systematic Review and Report". Journal of Clinical Medicine 9, n. 5 (20 maggio 2020): 1546. http://dx.doi.org/10.3390/jcm9051546.
Testo completoJiang, Shimin, Jinying Fang, Tianyu Yu, Lin Liu, Guming Zou, Hongmei Gao, Li Zhuo e Wenge Li. "Novel Model Predicts Diabetic Nephropathy in Type 2 Diabetes". American Journal of Nephrology 51, n. 2 (19 dicembre 2019): 130–38. http://dx.doi.org/10.1159/000505145.
Testo completoHong, Eun Pyo, Seong Gu Heo e Ji Wan Park. "The Liability Threshold Model for Predicting the Risk of Cardiovascular Disease in Patients with Type 2 Diabetes: A Multi-Cohort Study of Korean Adults". Metabolites 11, n. 1 (24 dicembre 2020): 6. http://dx.doi.org/10.3390/metabo11010006.
Testo completoMormile, Ilaria, Francescopaolo Granata, Aikaterini Detoraki, Daniela Pacella, Francesca Della Casa, Felicia De Rosa, Antonio Romano, Amato de Paulis e Francesca Wanda Rossi. "Predictive Response to Immunotherapy Score: A Useful Tool for Identifying Eligible Patients for Allergen Immunotherapy". Biomedicines 10, n. 5 (22 aprile 2022): 971. http://dx.doi.org/10.3390/biomedicines10050971.
Testo completoKleeman, Richard. "Limits, Variability, and General Behavior of Statistical Predictability of the Midlatitude Atmosphere". Journal of the Atmospheric Sciences 65, n. 1 (1 gennaio 2008): 263–75. http://dx.doi.org/10.1175/2007jas2234.1.
Testo completoYu, Daohua, Xin Zhou, Yu Pan, Zhendong Niu, Xu Yuan e Huafei Sun. "University Academic Performance Development Prediction Based on TDA". Entropy 25, n. 1 (23 dicembre 2022): 24. http://dx.doi.org/10.3390/e25010024.
Testo completoKiseleva, A. V., A. G. Soplenkova, V. A. Kutsenko, E. A. Sotnikova, Yu V. Vyatkin, А. A. Zharikova, A. I. Ershova et al. "Validation of genetic risk scores for type 2 diabetes on a Russian population sample from the biobank of the National Medical Research Center for Therapy and Preventive Medicine". Cardiovascular Therapy and Prevention 22, n. 11 (10 dicembre 2023): 3746. http://dx.doi.org/10.15829/1728-8800-20233746.
Testo completoCavati, Guido, Filippo Pirrotta, Daniela Merlotti, Elena Ceccarelli, Marco Calabrese, Luigi Gennari e Christian Mingiano. "Role of Advanced Glycation End-Products and Oxidative Stress in Type-2-Diabetes-Induced Bone Fragility and Implications on Fracture Risk Stratification". Antioxidants 12, n. 4 (14 aprile 2023): 928. http://dx.doi.org/10.3390/antiox12040928.
Testo completoSun, Yue, Hao-Yu Gao, Zhi-Yuan Fan, Yan He e Yu-Xiang Yan. "Metabolomics Signatures in Type 2 Diabetes: A Systematic Review and Integrative Analysis". Journal of Clinical Endocrinology & Metabolism 105, n. 4 (29 novembre 2019): 1000–1008. http://dx.doi.org/10.1210/clinem/dgz240.
Testo completoKocbek, Simon, Primoz Kocbek, Andraz Stozer, Tina Zupanic, Tudor Groza e Gregor Stiglic. "Building interpretable models for polypharmacy prediction in older chronic patients based on drug prescription records". PeerJ 6 (12 ottobre 2018): e5765. http://dx.doi.org/10.7717/peerj.5765.
Testo completoKomine, Hideo, e Nobuhide Ogata. "New equations for swelling characteristics of bentonite-based buffer materials". Canadian Geotechnical Journal 40, n. 2 (1 aprile 2003): 460–75. http://dx.doi.org/10.1139/t02-115.
Testo completoSUN, De-Chun, Zu-Jun LIU e Ke-Chu YI. "Double-Scale Channel Prediction for Precoded TDD-MIMO Systems". IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E96.A, n. 3 (2013): 745–46. http://dx.doi.org/10.1587/transfun.e96.a.745.
Testo completoChauhan, Kinsuk, Girish N. Nadkarni, Fergus Fleming, James McCullough, Cijiang J. He, John Quackenbush, Barbara Murphy, Michael J. Donovan, Steven G. Coca e Joseph V. Bonventre. "Initial Validation of a Machine Learning-Derived Prognostic Test (KidneyIntelX) Integrating Biomarkers and Electronic Health Record Data To Predict Longitudinal Kidney Outcomes". Kidney360 1, n. 8 (30 giugno 2020): 731–39. http://dx.doi.org/10.34067/kid.0002252020.
Testo completoPalmer, Daniel, Larissa Henze, Hugo Murua Escobar, Uwe Walter, Axel Kowald e Georg Fuellen. "Multicohort study testing the generalisability of the SASKit-ML stroke and PDAC prognostic model pipeline to other chronic diseases". BMJ Open 14, n. 9 (settembre 2024): e088181. http://dx.doi.org/10.1136/bmjopen-2024-088181.
Testo completoKUMAR, VIJAY, A. K. CHAKRAVARTY, ANKIT MAGOTRA, C. S. PATIL e P. R. SHIVAHRE. "Comparative study of ANN and conventional methods in forecasting first lactation milk yield in Murrah buffalo". Indian Journal of Animal Sciences 89, n. 11 (4 dicembre 2019). http://dx.doi.org/10.56093/ijans.v89i11.95887.
Testo completo"Prediction of first lactation milk yield on the basis of test day yield using artificial neural network versus multiple linear regression in Gir cows". Indian Journal of Dairy Science 77, n. 1 (2024): 91–96. https://doi.org/10.33785/ijds.2024.v77i01.013.
Testo completoJaeger, Byron C., Ramon Casanova, Brian Wells, Yitbarek Demesie, Jeanette Stafford e Michael Bancks. "Abstract P131: Individualized Risk Prediction for Type 2 Diabetes: A Secondary Analysis of the Diabetes Prevention Program". Circulation 149, Suppl_1 (19 marzo 2024). http://dx.doi.org/10.1161/circ.149.suppl_1.p131.
Testo completoLiu, Yang, Scott C. Ritchie, Shu Mei Teo, Matti O. Ruuskanen, Oleg Kambur, Qiyun Zhu, Jon Sanders et al. "Integration of polygenic and gut metagenomic risk prediction for common diseases". Nature Aging, 25 marzo 2024. http://dx.doi.org/10.1038/s43587-024-00590-7.
Testo completoFan, Yuting, Enwu Long, Lulu Cai, Qiyuan Cao, Xingwei Wu e Rongsheng Tong. "Machine Learning Approaches to Predict Risks of Diabetic Complications and Poor Glycemic Control in Nonadherent Type 2 Diabetes". Frontiers in Pharmacology 12 (22 giugno 2021). http://dx.doi.org/10.3389/fphar.2021.665951.
Testo completoMarchiori, Marian, Alice Maguolo, Alexander Perfilyev, Marlena Maziarz, Mats Martinell, Maria F. Gomez, Emma Ahlqvist, Sonia García-Calzón e Charlotte Ling. "Blood-based epigenetic biomarkers associated with incident chronic kidney disease in individuals with type 2 diabetes." Diabetes, 23 dicembre 2024. https://doi.org/10.2337/db24-0483.
Testo completoJiang, Mingyang, Fu Gan, Meishe Gan, Huachu Deng, Xuxu Chen, Xintao Yuan, Danyi Huang et al. "Predicting the Risk of Diabetic Foot Ulcers From Diabetics With Dysmetabolism: A Retrospective Clinical Trial". Frontiers in Endocrinology 13 (12 luglio 2022). http://dx.doi.org/10.3389/fendo.2022.929864.
Testo completoZhu, Yun, Ying Zhang, Jianhui Zhu, Jason G. Umans, Shelley Cole, Elisa T. Lee, Barbara V. Howard et al. "Abstract 22: Novel Plasma Lipids Predict Risk of Diabetes: A Longitudinal Lipidomics Study in American Indians". Circulation 141, Suppl_1 (3 marzo 2020). http://dx.doi.org/10.1161/circ.141.suppl_1.22.
Testo completo