Tesi sul tema "Targeted Maximum Likelihood Estimation"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Vedi i top-50 saggi (tesi di laurea o di dottorato) per l'attività di ricerca sul tema "Targeted Maximum Likelihood Estimation".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Vedi le tesi di molte aree scientifiche e compila una bibliografia corretta.
Schnitzer, Mireille. "Targeted maximum likelihood estimation for longitudinal data". Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=114242.
Testo completoDes méthodes d'analyse causale semi-paramétriques et efficaces ont été développées pour estimer les paramètres causaux efficacement et de façon robuste. Comme c'est le cas en général pour l'estimation causale, ces méthodes se basent sur un ensemble d'hypothèses mathématiques qui impliquent que la structure causale et les facteurs de confusion doivent être connus. La méthode d'estimation par le maximum de vraisemblance ciblé (TMLE) se veut une amélioration des équations d'estimation efficaces: elle a les propriétés de double robustesse (sans biais même avec une erreur de spécification partielle) et d'efficacité semi-paramétrique, mais peut également garantir des estimés finis pour les paramètres et la production d'un seul estimé en plus d'être robuste si les données sont éparses. Cette thèse, composée essentiellement de trois manuscrits, présente de nouvelles recherches sur l'analyse avec le TMLE de données longitudinales et de données de survie avec des facteurs de confusion variant dans le temps. Le premier manuscrit décrit la construction d'un TMLE à deux points dans le temps avec une distribution de la famille exponentielle généralisée comme fonction de perte du modèle de la réponse. Il démontre à l'aide d'une étude de simulation la robustesse de la version continue de cet algorithme TMLE, et utilise une version Poisson de la méthode pour une analyse simplifiée de l'étude PROmotion of Breastfeeding Intervention Trial (PROBIT) qui donne des signes d'un effet causal protecteur de l'allaitement sur les infections gastrointestinales. Le deuxième manuscrit présente une description de plusieurs estimateurs de substitution pour données longitudinales, une implémentation spéciale de la méthode TMLE longitudinale et une étude de cas du jeu de données PROBIT entier. Un algorithme TMLE séquentiel à K points dans le temps est utilisé (théorie déjà développée), lequel est implémenté de façon non-paramétrique avec le Super Learner. Cet algorithme diffère fondamentalement de la stratégie utilisée dans le premier manuscrit et offre des avantages en terme de calcul et de facilité d'implémentation. L'analyse compare les moyennes de dénombrements du nombre d'infections gastrointestinales dans la première année de vie d'un nouveau-né par durée d'allaitement et avec aucune censure, et conclut à la présence d'un effet protecteur. Des données simulées semblables au jeu de données PROBIT sont également générées, et la performance du TMLE de nouveau étudiée. Le troisième manuscrit développe une méthodologie pour estimer des modèles structurels marginaux pour données de survie. En utilisant l'algorithme séquentiel du TMLE longitudinal pour estimer des courbes de survie spécifiques à l'exposition pour tous les patrons d'exposition, il montre une façon de combiner les inférences pour modéliser la réponse à l'aide d'une spécification linéaire. Cet article présente la construction théorique de deux différents types de modèles structurels marginaux (modélisant le log du rapport des chances de survie et le risque) et présente une étude de simulation démontrant l'absence de biais de la technique. Il décrit ensuite une analyse de l'Étude de la Cohorte Canadienne de Co-Infection à l'aide d'une des méthodes TMLE pour ajuster des courbes de survie et un modèle pour la fonction de risque du développement de la maladie chronique du foie (ESLD) conditionnellement au temps et à l'élimination du virus de l'hépatite C.
Sarovar, Varada. "Targeted Maximum Likelihood Estimation for Evaluation of the Health Impacts of Air Pollution". Thesis, University of California, Berkeley, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10279902.
Testo completoThe adverse effects of air pollution on human life is of serious concern for today’s society. Two population groups that are especially vulnerable to air pollution are pregnant women and their growing fetuses, and the focus of this thesis is to study the effects of air pollution on these populations. In order to address the methodological limitations in prior research, we quantify the impact of air pollution on various adverse pregnancy outcomes, utilizing machine learning and novel causal inference methods. Specifically, we utilize two semi-parametric, double robust, asymptotically efficient substitution estimators to estimate the causal attributable risk of various pregnancy outcomes of interest. Model fitting via machine learning algorithms helps to avoid reliance on misspecified parametric models and thereby improve both the robustness and precision of our estimates, ensuring meaningful statistical inference. Under assumptions, the causal attributable risk that we estimate translates to the absolute change in adverse pregnancy outcome risk that would be observed under a hypothetical intervention to change pollution levels, relative to currently observed levels. The estimated causal attributable risk provides a quantitative estimate of a quantity with more immediate public health and policy relevance.
Khanafer, Sajida. "Sensory Integration During Goal Directed Reaches: The Effects of Manipulating Target Availability". Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/23422.
Testo completoRuprecht, Jürg. "Maximum likelihood estimation of multipath channels /". [S.l.] : [s.n.], 1989. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=8789.
Testo completoHorbelt, Werner. "Maximum likelihood estimation in dynamical systems". [S.l. : s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=963810812.
Testo completoSabbagh, Yvonne. "Maximum Likelihood Estimation of Hammerstein Models". Thesis, Linköping University, Department of Electrical Engineering, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-2061.
Testo completoIn this Master's thesis, Maximum Likelihood-based parametric identification methods for discrete-time SISO Hammerstein models from perturbed observations on both input and output, are investigated.
Hammerstein models, consisting of a static nonlinear block followed by a dynamic linear one, are widely applied to modeling nonlinear dynamic systems, i.e., dynamic systems having nonlinearity at its input.
Two identification methods are proposed. The first one assumes a Hammerstein model where the input signal is noise-free and the output signal is perturbed with colored noise. The second assumes, however, white noises added to the input and output of the nonlinearity and to the output of the whole considered Hammerstein model. Both methods operate directly in the time domain and their properties are illustrated by a number of simulated examples. It should be observed that attention is focused on derivation, numerical calculation, and simulation corresponding to the first identification method mentioned above.
Leeuw, Johannes Leonardus van der. "Maximum likelihood estimation of exact ARMA models /". Tilburg : Tilburg University Press, 1997. http://www.gbv.de/dms/goettingen/265169976.pdf.
Testo completoEhlers, Rene. "Maximum likelihood estimation procedures for categorical data". Pretoria : [s.n.], 2002. http://upetd.up.ac.za/thesis/available/etd-07222005-124541.
Testo completoZou, Yiqun. "Attainment of Global Convergence in Maximum Likelihood Estimation". Thesis, University of Manchester, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.511845.
Testo completoMariano, Machado Robson José. "Penalised maximum likelihood estimation for multi-state models". Thesis, University College London (University of London), 2018. http://discovery.ucl.ac.uk/10060352/.
Testo completoWeng, Yu. "Maximum Likelihood Estimation of Logistic Sinusoidal Regression Models". Thesis, University of North Texas, 2013. https://digital.library.unt.edu/ark:/67531/metadc407796/.
Testo completoDeGroot, Don Johan. "Maximum likelihood estimation of spatially correlated soil properties". Thesis, Massachusetts Institute of Technology, 1985. http://hdl.handle.net/1721.1/15282.
Testo completoMICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING.
Bibliography: leaves 109-110.
by Don Johan DeGroot.
M.S.
John, Andrea. "Maximum likelihood estimation in mis-specified reliability distributions". Thesis, Swansea University, 2003. https://cronfa.swan.ac.uk/Record/cronfa42494.
Testo completoWhite, Scott Ian. "Stochastic volatility: Maximum likelihood estimation and specification testing". Thesis, Queensland University of Technology, 2006. https://eprints.qut.edu.au/16220/1/Scott_White_Thesis.pdf.
Testo completoWhite, Scott Ian. "Stochastic volatility : maximum likelihood estimation and specification testing". Queensland University of Technology, 2006. http://eprints.qut.edu.au/16220/.
Testo completoZaeva, Maria. "Maximum likelihood estimators for circular structural model". Birmingham, Ala. : University of Alabama at Birmingham, 2009. https://www.mhsl.uab.edu/dt/2009m/zaeva.pdf.
Testo completoTitle from PDF title page (viewed Jan. 21, 2010). Additional advisors: Yulia Karpeshina, Ian Knowles, Rudi Weikard. Includes bibliographical references (p. 19).
Cule, Madeleine. "Maximum likelihood estimation of a multivariate log-concave density". Thesis, University of Cambridge, 2010. https://www.repository.cam.ac.uk/handle/1810/237061.
Testo completoHartford, Alan Hughes. "Computational approaches for maximum likelihood estimation for nonlinearmixed models". NCSU, 2000. http://www.lib.ncsu.edu/theses/available/etd-20000719-081254.
Testo completoThe nonlinear mixed model is an important tool for analyzingpharmacokinetic and other repeated-measures data.In particular, these models are used when the measured response for anindividual,,has a nonlinear relationship with unknown, random, individual-specificparameters,.Ideally, the method of maximum likelihood is used to find estimates forthe parameters ofthe model after integrating out the random effects in the conditionallikelihood. However, closed form solutions tothe integral are generally not available. As a result, methods have beenpreviously developed to find approximatemaximum likelihood estimates for the parameters in the nonlinear mixedmodel. These approximate methods include FirstOrder linearization, Laplace's approximation, importance sampling, andGaussian quadrature. The methods are availabletoday in several software packages for models of limited sophistication;constant conditional error variance is requiredfor proper utilization of most software. In addition, distributionalassumptions are needed. This work investigates howrobust two of these methods, First Order linearization and Laplace'sapproximation, are to these assumptions. The findingis that Laplace's approximation performs well, resulting in betterestimation than first order linearization when bothmodels converge to a solution.
A method must provide good estimates of the likelihood at points inthe parameter space near the solution. This workcompares this ability among the numerical integration techniques,Gaussian quadrature, importance sampling, and Laplace'sapproximation. A new "scaled" and "centered" version of Gaussianquadrature is found to be the most accurate technique.In addition, the technique requires evaluation of the integrand at onlya few abscissas. Laplace's method also performswell; it is more accurate than importance sampling with even 100importance samples over two dimensions. Even so,Laplace's method still does not perform as well as Gaussian quadrature.Overall, Laplace's approximation performs betterthan expected, and is shown to be a reliable method while stillcomputationally less demanding.
This work also introduces a new method to maximize the likelihood.This method can be sharpened to any desired levelof accuracy. Stochastic approximation is incorporated to continuesampling until enough information is gathered to resultin accurate estimation. This new method is shown to work well for linearmixed models, but is not yet successful for thenonlinear mixed model.
Storer, Robert Hedley. "Adaptive estimation by maximum likelihood fitting of Johnson distributions". Diss., Georgia Institute of Technology, 1987. http://hdl.handle.net/1853/24082.
Testo completoWang, Qiang. "Maximum likelihood estimation of phylogenetic tree with evolutionary parameters". Connect to this title online, 2004. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1083177084.
Testo completoTitle from first page of PDF file. Document formatted into pages; contains xi, 167 p.; also includes graphics Includes bibliographical references (p. 157-167). Available online via OhioLINK's ETD Center
Fischer, Mareike. "Novel Mathematical Aspects of Phylogenetic Estimation". Thesis, University of Canterbury. Mathematics and Statistics, 2009. http://hdl.handle.net/10092/2331.
Testo completoBoscarino, Andrea. "Deep Learning Models with Stochastic Targets: an Application for Transprecision Computing". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/20078/.
Testo completoXue, Huitian, e 薛惠天. "Maximum likelihood estimation of parameters with constraints in normaland multinomial distributions". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2012. http://hub.hku.hk/bib/B47850012.
Testo completopublished_or_final_version
Statistics and Actuarial Science
Master
Master of Philosophy
Leroux, Brian. "Maximum likelihood estimation for mixture distributions and hidden Markov models". Thesis, University of British Columbia, 1989. http://hdl.handle.net/2429/29176.
Testo completoScience, Faculty of
Statistics, Department of
Graduate
Strasser, Helmut. "The covariance structure of conditional maximum likelihood estimates". Oldenbourg Verlag, 2012. http://epub.wu.ac.at/3619/1/covariance_final.pdf.
Testo completoGandhi, Mital A. "Robust Kalman Filters Using Generalized Maximum Likelihood-Type Estimators". Diss., Virginia Tech, 2009. http://hdl.handle.net/10919/29902.
Testo completoPh. D.
Kim, Hyunjung. "Unit Root Tests in Panel Data: Weighted Symmetric Estimation and Maximum Likelihood Estimation". NCSU, 2001. http://www.lib.ncsu.edu/theses/available/etd-20010823-091533.
Testo completoThere has been much interest in testing nonstationarity of panel data in the econometric literature. In the last decade, several tests based on the ordinary least squares and Lagrange multiplier methodhave been developed. In contrast to a unit root test in the univariate case,test statistics in panel data have Gaussian limiting distributions.This dissertation considers weighted symmetric estimation and maximum likelihood estimation in the autoregressive model with individual effects.The asymptotic distributions have been derived as the number of individuals and time periods become large. The power study from Monte Carloexperiments shows that the proposed test statistics perform substantiallybetter than those in previous studies even for small samples.As an example, we consider the real Gross Domestic Product per Capita for 12 countries.
Duong, Chi-Hong. "Approches statistiques en pharmacoépidémiologie pour la prise en compte des facteurs de confusion indirectement mesurés dans les bases de données médico-administratives : Application aux médicaments pris au cours de la grossesse". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASR028.
Testo completoHealthcare administrative databases are increasingly used in pharmacoepidemiology. However, the existence of unmeasured and uncontrolled confounders can bias analyses. In this work, we explore the value of leveraging the richness of data through large-scale selection of a large number of measured covariates correlated with unmeasured confounders to indirectly adjust for them. This concept is the cornerstone of the High-dimensional propensity score (hdPS), and we apply the same approach to G-computation (GC) and Targeted Maximum Likelihood Estimation (TMLE). Although these methods have been evaluated in some simulation studies, their performance on large real-world databases remains underexplored. This thesis aims to assess their contributions to mitigating the effect of directly or indirectly measured confounders in the French administrative health care database (SNDS) for pharmacoepidemiological studies in pregnant women. In Chapter 2, we used a set of reference drugs related to prematurity to compare the performance of the three methods. All reduced confounding bias, with GC showing the best performance. In Chapter 3, we conducted an hdPS analysis in a more complex modeling setting to investigate the controversial association between non-steroidal anti-inflammatory drugs (NSAIDs) and miscarriage. We implemented a Cox model with time-dependent variables and the “lag-time” approach to address other biases (immortal time bias and protopathic bias). We compared analyses adjusted for factors chosen according to the current literature with those chosen by the hdPS algorithm. In both types of analysis, NSAIDs were associated with an increased risk of miscarriage, and the observed differences in estimated risks could partly be explained by the difference between the causal estimands targeted by the approaches. Our work confirms the contribution of statistical methods to reducing confounding bias. It also highlights major challenges encountered during their practical application, related to the complexity of modeling and study design, as well as their computational cost
Hu, Huilin. "Large sample theory for pseudo-maximum likelihood estimates in semiparametric models /". Thesis, Connect to this title online; UW restricted, 1998. http://hdl.handle.net/1773/8936.
Testo completoCheng, Yang. "Maximum likelihood estimation and computation in a random effect factor model". College Park, Md. : University of Maryland, 2004. http://hdl.handle.net/1903/1782.
Testo completoThesis research directed by: Mathematics. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Chotikakamthorn, Nopporn. "A pre-filtering maximum likelihood approach to multiple source direction estimation". Thesis, Imperial College London, 1996. http://hdl.handle.net/10044/1/8634.
Testo completoYang, Jian. "Semiparametric maximum likelihood estimation of nonlinear regression models and GARCH models". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape15/PQDD_0007/NQ27861.pdf.
Testo completoSkeen, Matthew E. (Matthew Edward). "Maximum likelihood estimation of fractional Brownian motion and Markov noise parameters". Thesis, Massachusetts Institute of Technology, 1991. http://hdl.handle.net/1721.1/42527.
Testo completoThornton, K. M. "The use of sample spacings in parameter estimation with applications". Thesis, Cardiff University, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.238217.
Testo completoGillan, Catherine C. "Using the piecewise exponential distribution to model the length of stay in a manpower planning system". Thesis, University of Ulster, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.338317.
Testo completoYildirim, Sinan. "Maximum likelihood parameter estimation in time series models using sequential Monte Carlo". Thesis, University of Cambridge, 2013. https://www.repository.cam.ac.uk/handle/1810/244707.
Testo completoSOUZA, MARCIO ALBUQUERQUE DE. "MAXIMUM LIKELIHOOD ESTIMATION OF THE DIRECTION-OF-ARRIVAL OF PSK MODULATED CARRIERS". PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2004. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=5718@1.
Testo completoEm sistemas de comunicações móveis, a modulação digital em fase (PSK)é amplamente utilizada em esquemas de transmissão em rádio-propagação. Trabalhos anteriores consideraram alguns métodos baseados no critério de máxima verossimilhança (MV) para estimação de direção-de-chegada de sinais genéricos que atingem um conjunto (array) de sensores. Esta tese propõe um novo estimador MV para a direção-de-chegada, desenvolvido especificamente para sistemas de comunicação PSK. Dois modelos de transmissão são concebidos para estimação dos parâmetros: um mais idealizado, considerando todas as portadoras alinhadas no tempo com o receptor, e outro que considera este desalinhamento na forma de retardo. O número de parâmetros a serem conjuntamente estimados é significativamente reduzido ao se calcular o valor esperado dos sinais medidos no array de antenas com relação µas fases de modulação (dados de informação). O desempenho do estimador em vários cenários simulados é apresentado e comparado ao desempenho do estimador MV clássico desenvolvido sem considerar uma estrutura específica para o sinal. Limitantes de Cramér-Rao para os cenários de portadora única também são calculados. O método proposto se mostra mais robusto por apresentar melhor desempenho que o estimador MV clássico em todas as simulações.
In mobile communication systems, phase shift keying (PSK) modulation is widely used in digital transmission schemes. Previous works have considered several maximum likelihood (ML) methods for the direction-of-arrival (DOA) estimation of generic signals reaching a phased-array of sensors. This thesis proposes a new ML DOA estimator designed to be used in PSK communication systems. Two transmission models are considered for parameter estimation: a simpler one, considering all carrier clocks time-aligned with the receiver clock, and another that considers this misalignment as a delay for each carrier. The number of parameters to be jointly estimated is significantly reduced when the expected value of the antenna array measured signals with respect to the modulation phases is evaluated. The estimator performance in several simulation scenarios is presented and compared to the performance of a classic ML estimator designed for all sorts of signal models. Cramér-Rao bounds for single carrier scenarios are also evaluated. The proposed method robustly outperforms the classic ML estimator in all simulations.
Irineo, Joseph B. (Joseph Bernard) 1976. "An object-oriented, maximum-likelihood parameter estimation program for GARCH(p,q)". Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/80074.
Testo completoSchneider, Grant W. "Maximum Likelihood Estimation for Stochastic Differential Equations Using Sequential Kriging-Based Optimization". The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1406912247.
Testo completoWang, Steven Xiaogang. "Maximum weighted likelihood estimation". Thesis, 2001. http://hdl.handle.net/2429/13844.
Testo completo"Optimal recursive maximum likelihood estimation". Sloan School of Management, Massachusetts Institute of Technology], 1987. http://hdl.handle.net/1721.1/2987.
Testo completoSeo, Byungtae. "Doubly-smoothed maximum likelihood estimation". 2007. http://etda.libraries.psu.edu/theses/approved/WorldWideIndex/ETD-2129/index.html.
Testo completoBuot, Max. "Genetic algorithms and maximum likelihood estimation /". 2003. http://wwwlib.umi.com/dissertations/fullcit/3108787.
Testo completoRichardson, Alice. "Maximum likelihood estimation of variance components". Master's thesis, 1991. http://hdl.handle.net/1885/133923.
Testo completoVicente, David José Marques. "Distributed Algorithms for Target Localization in Wireless Sensor Networks Using Hybrid Measurements". Master's thesis, 2017. http://hdl.handle.net/10362/27875.
Testo completoMai, Anh Tien. "Revisiting optimization algorithms for maximum likelihood estimation". Thèse, 2012. http://hdl.handle.net/1866/9828.
Testo completoMaximum likelihood is one of the most popular techniques to estimate the parameters of some given distributions. Under slight conditions, the produced estimators are consistent and asymptotically efficient. Maximum likelihood problems can be handled as non-linear programming problems, possibly non convex, that can be solved for instance using line-search methods and trust-region algorithms. Moreover, under some conditions, it is possible to exploit the structures of such problems in order to speedup convergence. In this work, we consider various non-linear programming techniques, either standard or recently developed, within the maximum likelihood estimation perspective. We also propose new algorithms to solve this estimation problem, capitalizing on Hessian approximation techniques and developing new methods to compute steps, in particular in the context of line-search approaches. More specifically, we investigate methods that allow us switching between Hessian approximations and adapting the step length along the search direction. We finally assess the numerical efficiency of the proposed methods for the estimation of discrete choice models, more precisely mixed logit models.
Ehlers, Rene. "Maximum likelihood estimation procedures for categorical data". Diss., 2003. http://hdl.handle.net/2263/26533.
Testo completoDissertation (MSc (Mathematical Statistics))--University of Pretoria, 2005.
Mathematics and Applied Mathematics
unrestricted
LIU, RONG-XUAN, e 劉鎔瑄. "Adversarial Image Description without Maximum Likelihood Estimation". Thesis, 2018. http://ndltd.ncl.edu.tw/handle/c46qaj.
Testo completo國立中正大學
電機工程研究所
106
A fully visible belief network trained with maximum-likelihood is a typical strategy to learn a language model. However such an approach yields the exposure bias due to different behaviors at training and inference stage: To predict the next symbol, the model has provided with preceding information that is available at training stage but not at inference stage, when it could result in worse predictions along with accumulated errors and increased sentence length. On the contrary, we train another neural paradigm for the image description via an adversarial fashion from scratch. We do not adopt any maximum-likelihood manner and address exposure bias. The generative model takes the learning objective of minimizing the earth mover’s distance to make the generator’s distribution indistinguishable from the empirical distribution. We also employ Gumbel-max trick as a continuous approximation of the one-hot word encoding, conquering the “non-differentiable sampling problem”. In this case training both the discriminator and generator requires only generic end-to-end back-propagation and gradient-based optimization methods. Experimental results show that our adversarial approach improves the performance on several evaluation metrics of the image captioning task.
Choi, Ji Eun. "Stochastic Volatility Models and Simulated Maximum Likelihood Estimation". Thesis, 2011. http://hdl.handle.net/10012/6045.
Testo completoTsai, Wen-Chi, e 蔡紋琦. "Maximum Likelihood Estimation of a Monotone Regression Function". Thesis, 1994. http://ndltd.ncl.edu.tw/handle/26048287023325781218.
Testo completo