Indice
Letteratura scientifica selezionata sul tema "Tachycardie ventriculaire – Modèles mathématiques"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Tachycardie ventriculaire – Modèles mathématiques".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Tesi sul tema "Tachycardie ventriculaire – Modèles mathématiques"
Seigneuric, Renaud. "Étude d'hétérogénéités simulées et in vitro du tissu cardiaque et de leurs rôles dans les tachycardies ventriculaires par réentrée". Grenoble 1, 2000. http://www.theses.fr/2000GRE19003.
Testo completoNati, Poltri Simone. "Modélisation mathématique de la réponse du tissu cardiaque après ablation par champs pulsés". Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0322.
Testo completoCardiac arrhythmias are irregularities in the normal rhythm of the heart, caused by anomalies in the electrical activity of the myocardium. Among the many ablation strategies used to isolate these pathologies, Pulsed electric Field Ablation (PFA) has emerged as a novel non-thermal technique that takes advantage of short and high-voltage electrical pulses to kill cardiac cells, by ensuring the precise targeting of the abnormal tissue and the preservation of the tissue scaffold. The aim of this thesis is to propose a mathematical model to study the long-term effects of PFA on the cardiac tissue, in the context of two different pathologies: Atrial Fibrillation (AF) - a common atrial arrhythmia that mostly starts from pulmonary veins - and Ventricular Tachycardia (VT), a rapid and irregular heartbeat that originates from tissue heterogeneity in the ventricles. While for AF the ablated area is thin compared to the left atrium domain, for VT the ablated region is not negligible. To describe the electrical activity of the heart we start from the bidomain model - a standard parabolic degenerate semilinear model that describes the electrophysiology of the heart - and we modify it depending on the pathology of interest. In the context of AF we introduce inside the ablated area a small parameter ε - proportional to the thickness of the region - that also rescales the intra-cellular conductivity. We analyze the static version of the modified bidomain system in the semilinear context, and we perform a formal asymptotic analysis to determine the approximate transmission conditions at the interface between the ablated area and the healthy region, as ε approaches zero. The asymptotic expansion at any order is proven and numerically validated. We also propose numerical simulations (obtained using FreeFem++, a finite element library) in a dynamic context. By considering a synthetic geometry of a left atrium, we simulate the isolation of a pulmonary vein from which AF is supposed to trigger. Non-overlapping Schwarz methods are studied and adopted to numerically impose well-designed conditions at the interface. The results are compared with another technique, radio-frequency ablation (RFA), known to burn cardiac tissue through heat transfer and then to destroy the tissue scaffold. Our objective is to numerically predict the success or failure of the two ablation procedures. Then, we validate our approaches in a real heart data from sheep. Our collaborators at IHU Liryc first induced VT in different sheep by creating two cardiac scars separated by a slow conduction channel, and then performed a PFA procedure to treat the induced VT. In the context of VT, our model proposed for AF is not applicable, since the hypothesis regarding the small size of the ablated region is no longer valid. Moreover, VT is a more complex pathology to model as it is caused by tissue heterogeneity. We modify the bidomain model by introducing a parameter ε - that in this case stands for the ablation level - inside the ablated area and we use it to rescale the intra-cellular conductivity. Simulations are performed to reproduce VT in a sheep ventricle geometry thanks to a signal reentry placed nearby the channel. We also propose simulations of PFA and we compare them with RFA to numerically predict the success or failure of the two ablation procedures. The numerical results are also compared with the activation endocardium map built before the PFA intervention. To conclude, this work provides a first numerical study of the mathematical descriptions of PFA in both AF and VT context, opening perspectives towards clinical applications
Relan, Jatin. "Modèles électrophysiologiques personnalisés de tachycardie ventriculaire pour la planification de la thérapie par ablation radio-fréquence". Phd thesis, Ecole Nationale Supérieure des Mines de Paris, 2012. http://pastel.archives-ouvertes.fr/pastel-00794165.
Testo completoCedilnik, Nicolas. "Personnalisation basée sur l'imagerie de modèles cardiaques électrophysiologiques pour la planification du traitement de la tachycardie ventriculaire". Thesis, Université Côte d'Azur, 2020. http://www.theses.fr/2020COAZ4097.
Testo completoAcute infarct survival rates have drastically improved over the last decades, mechanically increasing chronic infarct related affections.Among these affections, ischaemic ventricular tachycardia (VT) is a particularly serious arrhythmia that can lead to the often lethal ventricular fibrillation. VT can be treated by radio frequency ablation of the arrhythmogenic substrate.The first phase of this long and risky interventional cardiology procedure is an electrophysiological (EP) exploration of the heart.This phase aims at localising the ablation targets, notably by inducing the arrhythmia in a controlled setting. In this work we propose to re-create this exploration phase in silico, by personalising cardiac EP models.We show that key information about infarct scar location and heterogeneity can be automatically obtained by a deep learning-based automated segmentation of the myocardium on computed tomography (CT) images.Our goal is to use this information to run patient-specific simulations of depolarisation wave propagation in the myocardium, mimicking the interventional cardiology exploration phase.We start by studying the relationship between the depolarisation wave propagation velocity and the left ventricular wall thickness to personalise an Eikonal model, an approach that can successfully reproduce periodic activation maps of the left ventricle recorded during VT.We then propose efficient algorithms to detect the repolarisation wave on unipolar electrograms (UEG), that we use to analyse the UEGs embedded in such intra-cardiac recordings.Thanks to a multimodal registration between these recordings and CT images, we establish relationships between action potential durations/restitution properties and left ventricular wall thickness.These relationships are finally used to parametrise a reaction-diffusion model able to reproduce interventional cardiologists' induction protocols that trigger realistic and documented VTs. inteinterventional cardiologists' induction protocols that trigger realistic and documented VTs
Khaddoumi, Balkine. "Analyse et modélisation d'électrocardiogrammes dans le cas de pathologies ventriculaires". Nice, 2005. http://www.theses.fr/2005NICE4021.
Testo completoLe travail s’inscrit dans l’analyse des troubles du rythme cardiaque, et plus particulièrement ceux issus de disfonctionnements des ventricules. Deux problèmes ont été abordés : le premier concerne l’étude d’épisodes de Fibrillation Ventriculaire (VF) obtenus chez l’homme par des enregistrements endocavitaires. Deux hypothèses ont été proposées : signal modélisé par un fondamental et des harmoniques stables ou dépendant du temps. On montre que l’on peut mettre en évidence sur des épisodes courts (5 à 15 secondes) des fluctuations significatives du fondamental grâce à des algorithmes adaptatifs ou évolutifs. Un résultat pratique, établi pour la première fois chez l’homme, est la corrélation entre le fondamental de l’épisode de FV et la période réfractaire. Le second problème concerne des enregistrements de l’ECG à l’aide d’un système à 64 électrodes. L’idée originale est de proposer une mesure de la dispersion spatiale des formes des ondes ECG. La pertinence de la mesure est prouvée en comparant un groupie de sujets ayant eu un infarctus du myocarde avec un groupe témoin sain. Pour chaque colonne d’électrodes les différences de forme sont calculées par rapport à un signal de référence obtenue par l’algorithme : Integral Shape Averaging (ISA). On peut attribuer à cette référence une position moyenne sur le thorax permettant de définir « un chemin moyen ». Ce chemin s’avère être un invariant, indépendant du type d’onde ECG,. Ainsi que du sujet sain ou pathologique. Les retombées pratiques de ce travail se trouvent dans l’aide au diagnostic et la modélisation de l’électrophysiologie cardiaque
Hamidi, Saad. "Analyse quantitative de l'ECG ambulatoire et étude de la dynamique spatio-temporelle de la repolarisation ventriculaire : méthodes, modèles et résultats". Lyon, INSA, 1995. http://www.theses.fr/1995ISAL0112.
Testo completoWe propose a quantitative investigation method to study the dynamic relationship between the ambulatory ECG parameters and to evaluate their interaction mechanisms. To overcome the limitations of the sampling frequency (128Hz), we have developed two interpolation methods based on a linear and a cubic spline approach. Our methodology based on CAVIAR serial analysis method to precisely measure the QT interval and to analyze the changes in the QRS and T morphology. First we have developed a set of methods for the precise quantification of the changes of the repolarization phase during tilt tests. Using FFT spectral analysis after oversampling the ECG data at 4 Hz allowed clearly identify spectral events in the QT interval around 0. 1 Hz and a significant increase of the QT low frequency components in upright tilt position that are clearly correlated to RR interval variations and correspond to an interaction between the sympathetic system and the ventricular action potentials. In a second step we have developed methods for the modelization and the identification of the "heart" system with RR as input and QT as output. Two approaches have been assessed, respectively based on parametric models and on Neural Nets. Because of the complexity and the non-linearity of the relationship QT(t)=f(RR,t), parametric models failed in modeling precisely its dynamic behavior. Neural Nets however have proven to be adequate for approximating the non linear characteristics. The results obtained by using the latter approach allowed to characterize the dynamic behavior of the repolarization phase of patients presenting a long QT syndrome
Khaddoumi, Balkine. "Analyse et modèlisation de l'activité électrique du coeur dans le cas de pathologies ventriculaires". Phd thesis, Université de Nice Sophia-Antipolis, 2005. http://tel.archives-ouvertes.fr/tel-00192273.
Testo completoLe, Quang Khai. "Troubles du rythme cardiaque dans les modèles murins transgéniques". Thèse, Nantes, 2010. https://archive.bu.univ-nantes.fr/pollux/show/show?id=77640043-d85a-4ffa-b817-17b1b0c76068.
Testo completoCardiovascular disease is the leading cause of death in the world each year. If no action is taken to improve cardiovascular health and current trends continue, WHO estimates that 25% more healthy life years will be lost to cardiovascular disease globally by 2020. Cardiac hypertrophy is the consequence of an excessive workload of the heart muscle leading to cardiac remodeling process. As the workload increases, the ventricular walls grow thicker, lose elasticity and eventually may fail to pump with as much force as a healthy heart. Furthermore, hypertrophied myocardium is not physiologically normal and may confer a predisposition to potentially fatal arrhythmias. Generally, the causal mechanism is ventricular fibrillation, a cardiac rhythm disorder which is irreversible but the pathophysiological mechanisms are complex and poorly understood. The functional consequences of mutations or ionic remodeling are relatively simple to study in vitro, but their role in the pathophysiology of arrhythmias in vivo is more difficult to grasp. Among the different animal models developed in cardiac arrhythmias research, the mouse is increasingly used because of our ability to mutate, knock-out or over-express genes of interest. The objective of my thesis was to study the role of ion channels in physiology as well as cardiac pathophysiology, particularly in the involvement of the occurrence of cardiac arrhythmias in vivo. This thesis will improve our understanding of the role of genetic abnormalities involving ionic remodeling in the pathogenesis of the heart and may also open new therapeutic perspectives in the treatment of cardiac remodeling as well as sudden cardiac death
Le, Quang Khai. "Troubles du rythme cardiaque dans les modèles murins transgéniques". Thèse, Nantes, 2010. http://hdl.handle.net/1866/4903.
Testo completoCardiovascular disease is the leading cause of death in the world each year. If no action is taken to improve cardiovascular health and current trends continue, WHO estimates that 25% more healthy life years will be lost to cardiovascular disease globally by 2020. Cardiac hypertrophy is the consequence of an excessive workload of the heart muscle leading to cardiac remodeling process. As the workload increases, the ventricular walls grow thicker, lose elasticity and eventually may fail to pump with as much force as a healthy heart. Furthermore, hypertrophied myocardium is not physiologically normal and may confer a predisposition to potentially fatal arrhythmias. Generally, the causal mechanism is ventricular fibrillation, a cardiac rhythm disorder which is irreversible but the pathophysiological mechanisms are complex and poorly understood. The functional consequences of mutations or ionic remodeling are relatively simple to study in vitro, but their role in the pathophysiology of arrhythmias in vivo is more difficult to grasp. Among the different animal models developed in cardiac arrhythmias research, the mouse is increasingly used because of our ability to mutate, knock-out or over-express genes of interest. The objective of my thesis was to study the role of ion channels in physiology as well as cardiac pathophysiology, particularly in the involvement of the occurrence of cardiac arrhythmias in vivo. This thesis will improve our understanding of the role of genetic abnormalities involving ionic remodeling in the pathogenesis of the heart and may also open new therapeutic perspectives in the treatment of cardiac remodeling as well as sudden cardiac death.
Thèse en cotutelle avec Université de Nantes - Pays de La Loire - France (2005-2010)
Kerfourn, Adrien. "Modélisation du système cardio-respiratoire : remodelage cardiaque et interactions patient-ventilateur". Rouen, 2015. http://www.theses.fr/2015ROUES051.
Testo completoRespiratory failure is defined as the inability of the respiratory system to ensure the organism’s needs in oxygen. This condition may be the consequence of various diseases and implies a treatment by ventilatory support. In noninvasive ventilation, “pressure support” mode is a ventilatory mode that is commonly used. This mode necessitates a good synchronization between the patient’s inspiratory efforts and the ventilator pressure cycles, one of the objectives being to reduce the patient’s work of breathing. Furthermore, noninvasive ventilation is known to have effects on the cardiovascular system, even if the underlying mechanisms remain poorly understood. First, we will focus on the modeling of the cardiovascular dynamics to assess the mechanisms leading to cardiac remodeling. This model allows to reproduce and explain the origin of the two phases of pulmonary arterial hypertension. A second part was devoted to patient-ventilator interactions in order to understand the emergence of the asynchrony events that can be observed in clinics. We built a dynamical model able to reproduce the global behavior of some ventilators available on the market. This work therefore represents a first theoretical approach allowing to improve the understanding of various interactions related to the cardiorespiratory system