Letteratura scientifica selezionata sul tema "T cells"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "T cells".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Articoli di riviste sul tema "T cells"

1

F. Abdel Hamid, Mahmoud, Safaa M. Morsy, Mostafa Abou El Ela, Rehab A. Hegazy, Marwa M. Fawzy, Laila A. Rashed, Ahmed M. Omar, Eman R. Abdel Fattah e Doaa M. Hany. "T helper-17 cells and T regulatory cells in vitiligo". International Journal of Academic Research 5, n. 6 (10 dicembre 2013): 273–78. http://dx.doi.org/10.7813/2075-4124.2013/5-6/a.34.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Singh, Yuvraj. "Chimeric Antigen Receptors T Cells (CAR T) Therapy". International Journal of Science and Research (IJSR) 13, n. 5 (5 maggio 2024): 1563–66. http://dx.doi.org/10.21275/sr24523173932.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Y, Elshimali. "Chimeric Antigen Receptor T-Cell Therapy (Car T-Cells) in Solid Tumors, Resistance and Success". Bioequivalence & Bioavailability International Journal 6, n. 1 (2022): 1–6. http://dx.doi.org/10.23880/beba-16000163.

Testo completo
Abstract (sommario):
CARs are chimeric synthetic antigen receptors that can be introduced into an immune cell to retarget its cytotoxicity toward a specific tumor antigen. CAR T-cells immunotherapy demonstrated significant success in the management of hematologic malignancies. Nevertheless, limited studies are present regarding its efficacy in solid and refractory tumors. It is well known that the major concerns regarding this technique include the risk of relapse and the resistance of tumor cells, in addition to high expenses and limited affordability. Several factors play a crucial role in improving the efficacy of immunotherapy, including tumor mutation burden (TMB), microsatellite instability (MSI), loss of heterozygosity (LOH), the APOBEC Protein Family, tumor microenvironment (TMI), and epigenetics. In this minireview, we address the current and future applications of CAR T-Cells against solid tumors and their measure for factors of resistance and success.
Gli stili APA, Harvard, Vancouver, ISO e altri
4

CPK, Cheung. "T Cells, Endothelial Cell, Metabolism; A Therapeutic Target in Chronic Inflammation". Open Access Journal of Microbiology & Biotechnology 5, n. 2 (2020): 1–6. http://dx.doi.org/10.23880/oajmb-16000163.

Testo completo
Abstract (sommario):
The role of metabolic reprogramming in the coordination of the immune response has gained increasing consideration in recent years. Indeed, it has become clear that changes in the metabolic status of immune cells can alter their functional properties. During inflammation, stimulated immune cells need to generate sufficient energy and biomolecules to support growth, proliferation and effector functions, including migration, cytotoxicity and production of cytokines. Thus, immune cells switch from oxidative phosphorylation to aerobic glycolysis, increasing their glucose uptake. A similar metabolic reprogramming has been described in endothelial cells which have the ability to interact with and modulate the function of immune cells and vice versa. Nonetheless, this complicated interplay between local environment, endothelial and immune cells metabolism, and immune functions remains incompletely understood. We analyze the metabolic reprogramming of endothelial and T cells during inflammation and we highlight some key components of this metabolic switch that can lead to the development of new therapeutics in chronic inflammatory disease.
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Meuer, Stefan C. "T cells". Immunology Today 12, n. 1 (gennaio 1991): 49. http://dx.doi.org/10.1016/0167-5699(91)90117-c.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Stauss, Hans J. "Engineered T cells can fight malignant T cells". Blood 126, n. 8 (20 agosto 2015): 927–28. http://dx.doi.org/10.1182/blood-2015-07-652057.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Scott, David W. "T regulatory cells turn on T regulatory cells". Blood 114, n. 19 (5 novembre 2009): 3975–76. http://dx.doi.org/10.1182/blood-2009-09-241406.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Zahran F, Zahran F., Al-haggar M. Al-haggar M e Derbala S. A. Derbala S.A. "Regulatory T Cells in Pediatric Lupus Nephritis". Indian Journal of Applied Research 3, n. 10 (1 ottobre 2011): 1–3. http://dx.doi.org/10.15373/2249555x/oct2013/91.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Ng, Y. H., M. H. Oberbarnscheidt, H. C. K. Chandramoorthy, R. Hoffman e G. Chalasani. "B Cells Help Alloreactive T Cells Differentiate Into Memory T Cells". American Journal of Transplantation 10, n. 9 (27 agosto 2010): 1970–80. http://dx.doi.org/10.1111/j.1600-6143.2010.03223.x.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Suzuki, Haruhiko, Zhe Shi, Yusuke Okuno e Ken-ichi Isobe. "Are CD8+CD122+ cells regulatory T cells or memory T cells?" Human Immunology 69, n. 11 (novembre 2008): 751–54. http://dx.doi.org/10.1016/j.humimm.2008.08.285.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Tesi sul tema "T cells"

1

Carson, Bryan David. "Impaired T cell receptor signaling in regulatory T cells /". Thesis, Connect to this title online; UW restricted, 2006. http://hdl.handle.net/1773/8337.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Lloyd, Angharad. "Gene editing in T-cells and T-cell targets". Thesis, Cardiff University, 2016. http://orca.cf.ac.uk/98512/.

Testo completo
Abstract (sommario):
Recent years have witnessed a rapid proliferation of gene editing in mammalian cells due to the increasing ease and reduced cost of targeted gene knockout. There has been much excitement about the prospect of engineering T-cells by gene editing in order to provide these cells with optimal attributes prior to adoptive cell therapy for cancer and autoimmune disease. I began by attempting to compare short hairpin RNA (shRNA) and zinc finger nuclease (ZFN) approaches using the CD8A gene as a target for proof of concept of gene editing in Molt3 cells. During the course of my studies the clustered regularly interspaced short palindromic repeats (CRISPR) mechanism for gene editing was discovered so I also included CRISPR/Cas9 in my studies. A direct comparison of the three gene editing tools indicated that the CRISPR/Cas9 system was superior in terms of ease, efficiency of knockout and cost. As the use of gene editing tools increases there are concerns about the inherent risks associated with the use of nuclease based gene editing tools prior to cellular therapy. Expression of nucleases can lead to off target mutagenesis and malignancy. To circumvent this problem I generated a non-nuclease based gene silencing system using the CD8A zinc finger (ZF) fused to a Krüppel associated box (KRAB) repressor domain. The ZF-KRAB fusion resulted in effective silencing of the CD8A gene in both the Molt3 cell line and in primary CD8+ T-cells. Importantly, unlike CRISPR/Cas9 based gene editing, the ZF-KRAB fusion was small enough to be transferred in a single lentiviral vector with a TCR allowing simultaneous redirection of patient T-cell specificity and alteration of T-cell function in a single construct. To improve the efficiency of gene editing with CRISPR/Cas9 I developed an ‘all in one’ CRISPR/Cas9 system which incorporated all elements of the CRISPR/Cas9 gene editing system in a single plasmid. The ‘all in one’ system was utilised to derive MHC-related protein 1 (MR1) deficient clones from the A549 lung carcinoma and THP-1 monocytic cell lines in order to study MR1 biology. Mucosal-associated invariant T-cell (MAIT) clones were not activated by MR1 deficient A549 or THP-1 clones infected with bacteria.
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Stefkova, Martina. "Regulatory T cells control the CD4 T cell repertoire". Doctoral thesis, Universite Libre de Bruxelles, 2016. https://dipot.ulb.ac.be/dspace/bitstream/2013/233151/3/Table.pdf.

Testo completo
Abstract (sommario):
Des études récentes menées chez l’homme et la souris ont suggéré que la diversité du répertoire TCR pourrait jouer un rôle dans la protection contre des pathogènes à haut pouvoir mutagène. Afin d’étudier le répertoire des lymphocytes T CD4, nous avons utilisé un modèle de souris TCRβ transgéniques exprimant une chaine β spécifique du peptide env122-141 dans le contexte du MHCII. Suite à l’immunisation des souris TCRβ transgéniques avec des cellules dendritiques pulsées avec le peptide env, une rapide prolifération et une restriction du répertoire des lymphocytes T Vα2 CD4 spécifiques est observée. L’analyse de la diversité du répertoire de ces cellules par séquençage à haut débit, a montré l’émergence d’un répertoire plus divers dans des souris déplétées en lymphocytes T régulateurs. Ces résultats suggèrent qu’en plus du rôle des Tregs dans le contrôle de la magnitude de la réponse immunitaire, ces cellules pourraient également contrôler la diversité du répertoire des lymphocytes T suite à une stimulation antigénique.
Recent studies conducted in mice and humans have suggested a role for the TCR repertoire diversity in immune protection against pathogens displaying high antigenic variability. To study the CD4 T cell repertoire, we used a mouse model in which T cells transgenically express the TCRβ chain of a TCR specific to a MHCII-restricted peptide, env122-141. Upon immunization with peptide-pulsed dendritic cells, antigen-specific Vα2+ CD4+ T cells rapidly expand and display a restricted TCRα repertoire. In particular, analysis of receptor diversity by high-throughput TCR sequencing in immunized mice suggests the emergence of a broader CDR3 Vα2 repertoire in Treg-depleted mice. These results suggest that Tregs may play a role in the restriction of the CD4 T cell repertoire during an immune response, raising therefore the possibility that in addition to controlling the magnitude of an immune response, regulatory cells may also control the diversity of TCRs in response to antigen stimulation.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Butcher, Sarah A. "T cell receptor genes of influenza A haemagglutinin specific T cells". Thesis, University College London (University of London), 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.315271.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Crawford, A. "How B cells influence T cell responses". Thesis, University of Edinburgh, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.645118.

Testo completo
Abstract (sommario):
Although studies using B cell deficient mice have been useful in understanding the importance of B cells under different conditions, it is difficult to then dissect exactly how B cells could be regulating T cell responses. By transferring OT-II transgenic T cells into either B cell deficient (μMT) or C57BL/6 mice, expansion and contraction of T cells can be tracked ex vivo. Expansion of OT-II cells is reduced in μMT mice compared to C57BL/6 mice. Thus, B cells can provide costimulatory signals, secrete cytokines and influence the lymphoid microarchitecture. To dissect which B cell factor(s) are involved in enhancing OT-II T cell expansion, a model system was used where one molecule on the B cells is depleted at one time. This was achieved by creating bone-marrow chimeras using a combination of μMT bone-marrow and wildtype or deficient bone-marrow. Thus, all the B cells are either wildtype or deficient for a particular molecule. The molecules examined were MHC-II, which is required for antigen presentation, CD40, due to its costimulatory role, and lymphotoxin-alpha, for its role in maintenance of splenic architecture. Using the OT-II adoptive transfer system, we have shown a requirement for MHC-II but not CD40 on B cells for efficient T cell expansion. In light of these observations, the role of B cell-derived MHC-II for T cell memory generation was examined. To do this, I used MHC-II tetramers to track a polyclonal population of T cells in the host.  Using this technique, I have shown that T cell memory is also diminished when the B cells do not express MHC-II. Thus, a cognate interaction with B cells is required for both efficient expansion and memory generation of CD4+ T cells.
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Sarris, Milka. "Dynamics of helper T cell and regulatory T cell interactions with dendritic cells". Thesis, University of Cambridge, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.611896.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Smith, Trevor Robert Frank. "Modulation of CD4+ T cell responses by CD4+CD25+ regulatory T cells and modified T cell epitopes". Thesis, Imperial College London, 2004. http://hdl.handle.net/10044/1/11317.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Murray, Nicholas. "Costimulation of T cells and its role in T cell recognition of malignant colorectal cells in vitro". Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.301247.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Li, Ming 1957. "Generation of CD8+ T cell immunity with help from CD4+ T cells". Monash University, Dept. of Pathology and Immunology, 2002. http://arrow.monash.edu.au/hdl/1959.1/8476.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Soper, David Michael. "Interleukin-2 receptor and T cell receptor signaling in regulatory T cells /". Thesis, Connect to this title online; UW restricted, 2007. http://hdl.handle.net/1773/8344.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Libri sul tema "T cells"

1

Marc, Feldmann, Lamb Jonathan R e Owen M. J, a cura di. T cells. New York: Wiley, 1989.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Annunziato, Francesco, Laura Maggi e Alessio Mazzoni, a cura di. T-Helper Cells. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1311-5.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Gigante, Margherita, e Elena Ranieri, a cura di. Cytotoxic T-Cells. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1507-2.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Ono, Masahiro, a cura di. Regulatory T-Cells. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-2647-4.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Zanetti, Maurizio, e Stephen P. Schoenberger, a cura di. Memory T Cells. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-6451-9.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Ranieri, Elena, a cura di. Cytotoxic T-Cells. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1158-5.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Waisman, Ari, e Burkhard Becher, a cura di. T-Helper Cells. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1212-4.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Kassiotis, George, e Adrian Liston, a cura di. Regulatory T Cells. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61737-979-6.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Zanetti, M. Memory T cells. New York: Springer Science+Business Media, 2010.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Graca, Luis, a cura di. T-Follicular Helper Cells. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-1736-6.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Capitoli di libri sul tema "T cells"

1

Srinivasan, Ramachandran. "T Cells". In Encyclopedia of Systems Biology, 2119. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_959.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Nomura, Takashi, e Aya Shinohara. "T Cells". In Immunology of the Skin, 57–94. Tokyo: Springer Japan, 2016. http://dx.doi.org/10.1007/978-4-431-55855-2_5.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Arampatzis, Adamantios, Lida Mademli, Thomas Reilly, Mike I. Lambert, Laurent Bosquet, Jean-Paul Richalet, Thierry Busso et al. "T Cells". In Encyclopedia of Exercise Medicine in Health and Disease, 843. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-540-29807-6_3106.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Sakaguchi, Shimon. "Regulatory T Cells: History and Perspective". In Regulatory T Cells, 3–17. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61737-979-6_1.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Lahl, Katharina, e Tim Sparwasser. "In Vivo Depletion of FoxP3+ Tregs Using the DEREG Mouse Model". In Regulatory T Cells, 157–72. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61737-979-6_10.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Daniel, Carolin, Hidde Ploegh e Harald von Boehmer. "Antigen-Specific Induction of Regulatory T Cells In Vivo and In Vitro". In Regulatory T Cells, 173–85. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61737-979-6_11.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Nouzé, Clémence, Lise Pasquet e Joost P. M. van Meerwijk. "In Vitro Expansion of Alloantigen-Specific Regulatory T Cells and Their Use in Prevention of Allograft Rejection". In Regulatory T Cells, 187–96. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61737-979-6_12.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

d’Hennezel, Eva, e Ciriaco A. Piccirillo. "Analysis of Human FOXP3+ Treg Cells Phenotype and Function". In Regulatory T Cells, 199–218. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61737-979-6_13.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Hobeika, Amy C., Michael A. Morse, Takuya Osada, Sharon Peplinski, H. Kim Lyerly e Timothy M. Clay. "Depletion of Human Regulatory T Cells". In Regulatory T Cells, 219–31. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61737-979-6_14.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Schneider, Anya, e Jane H. Buckner. "Assessment of Suppressive Capacity by Human Regulatory T Cells Using a Reproducible, Bi-Directional CFSE-Based In Vitro Assay". In Regulatory T Cells, 233–41. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61737-979-6_15.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Atti di convegni sul tema "T cells"

1

Mamonkin, Maksim. "Abstract IA17: CAR T cells for T-cell lymphoma". In Abstracts: AACR Virtual Meeting: Advances in Malignant Lymphoma; August 17-19, 2020. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/2643-3249.lymphoma20-ia17.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Ahmed, M. N., A. Chester, A. McCormack, K. Ayyasola, N. Zaghloul, E. Miller e M. Yacoub. "CD4+ ChAT+ T Cells (ChAT T Cells) as a New Vasodilator". In American Thoracic Society 2020 International Conference, May 15-20, 2020 - Philadelphia, PA. American Thoracic Society, 2020. http://dx.doi.org/10.1164/ajrccm-conference.2020.201.1_meetingabstracts.a2675.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Correia, Eduardo, Clara Andrade, Leonardo Silva, Brenno Sessa, Luiza Abdo, Karina Hajdu, Emmanuel Aragão e Martín Bonamino. "Generation of 19bbz CAR-T cells in tcr knockout T-cells". In International Symposium on Immunobiologicals. Instituto de Tecnologia em Imunobiológicos, 2023. http://dx.doi.org/10.35259/isi.2023_58059.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Rabin, Moriah, Erin Cole, Scott Garforth, Jian Hua Zheng, Steven Almo e Harris Goldstein. "295 Novel T-cell immunotherapeutics enable the selective generation of more potently cytotoxic CD19 chimeric antigen receptor T-cells (CAR-T cells) from CMV-specific cytotoxic T-cells". In SITC 38th Annual Meeting (SITC 2023) Abstracts. BMJ Publishing Group Ltd, 2023. http://dx.doi.org/10.1136/jitc-2023-sitc2023.0295.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Matsuda, Tatsuo, Taigo Kato, Yuji Ikeda, Matthias Leisegang, Sachiko Yoshimura, Tetsuro Hikichi, Makiko Harada et al. "Abstract 625: Eradication of cancer cells by T-cell receptor-engineered T cells targeting neoantigens/oncoantigens". In Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-625.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Greenberg, Philip D., Sebastian Ochsenreither, Tom Schmitt, David Aggen, David Kranz, Matthias Wolfl, Jurgen Kuball et al. "Abstract IA1: T cells vs. tumor cells: Arming/deploying T cells for a successful battle." In Abstracts: AACR Special Conference on Tumor Immunology: Multidisciplinary Science Driving Basic and Clinical Advances; December 2-5, 2012; Miami, FL. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.tumimm2012-ia1.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Kristensen, Nikolaj Pagh, Christina Heeke, Siri A. Tvingsholm, Anne-Mette Bjerregaard, Arianna Draghi, Amalie Kai Bentzen, Rikke Andersen, Marco Donia, Inge Marie Svane e Sine Reker Hadrup. "Abstract A14: Neoepitope-specific CD8+ T cells in adoptive T-cell transfer". In Abstracts: AACR Special Conference on Tumor Immunology and Immunotherapy; November 17-20, 2019; Boston, MA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/2326-6074.tumimm19-a14.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Jing, Ran, Mohamad Najia, Eleanor Meader, Luca Hensch, Edroaldo Lummertz da Rocha, R. Grant Rowe, Thorsten Schlaeger, Marcela Maus, Trista North e George Daley. "950 Epigenetic reprogramming of iPSC-derived T cells for CAR T cell therapy". In SITC 38th Annual Meeting (SITC 2023) Abstracts. BMJ Publishing Group Ltd, 2023. http://dx.doi.org/10.1136/jitc-2023-sitc2023.0950.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Hwang, Sunhee, Young H. Kim, Yeeun Bak e Byoung S. Kwon. "442-L Development of Panck T cells, MR1-restricted pan-cancer-killing CD8+T cells, as an adoptive T cell therapeutics". In SITC 38th Annual Meeting (SITC 2023) Abstracts Supplement 2. BMJ Publishing Group Ltd, 2023. http://dx.doi.org/10.1136/jitc-2023-sitc2023.0442-l.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Qian, Feng, Jianqun Liao, Anthony J. Miliotto, Katherine A. Collins e Kunle Odunsi. "Abstract A35: Ovarian cancer stem cells subvert tumor-specific T cells by disrupting T cells’ metabolic fitness". In Abstracts: AACR Special Conference: Addressing Critical Questions in Ovarian Cancer Research and Treatment; October 1-4, 2017; Pittsburgh, PA. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1557-3265.ovca17-a35.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Rapporti di organizzazioni sul tema "T cells"

1

Chen, Xiuxu, e Jenny E. Gumperz. Human CD1d-Restricted Natural Killer T (NKT) Cell Cytotoxicity Against Myeloid Cells. Fort Belvoir, VA: Defense Technical Information Center, aprile 2006. http://dx.doi.org/10.21236/ada462826.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Wong, Jr, e K. K. Regulatory T Cells and Host Anti-CML Responses. Fort Belvoir, VA: Defense Technical Information Center, giugno 2008. http://dx.doi.org/10.21236/ada487614.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Wong, Jr, e K. K. Regulatory T Cells and Host Anti-CML Responses. Fort Belvoir, VA: Defense Technical Information Center, giugno 2009. http://dx.doi.org/10.21236/ada510759.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Knutson, Keith L. CD8 T Cells and Immunoediting of Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, agosto 2008. http://dx.doi.org/10.21236/ada624685.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Junghans, Richard P. Designer T-Cells for Breast Cancer Therapy: Phase I Studies. Fort Belvoir, VA: Defense Technical Information Center, luglio 1999. http://dx.doi.org/10.21236/ada394380.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Junghans, Richard P. Designer T Cells for Breast Cancer Therapy: Phase I Studies. Fort Belvoir, VA: Defense Technical Information Center, luglio 2001. http://dx.doi.org/10.21236/ada398295.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Junghans, Richard P. Designer T Cells for Breast Cancer Therapy: Phase I Studies. Fort Belvoir, VA: Defense Technical Information Center, luglio 2002. http://dx.doi.org/10.21236/ada408881.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Junghans, Richard. Designer T Cells for Breast Cancer Therapy: Phase I Studies. Fort Belvoir, VA: Defense Technical Information Center, luglio 2000. http://dx.doi.org/10.21236/ada383028.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Coukos, George. Targeting Breast Cancer with T Cells Redirected to the Vasculature. Addendum. Fort Belvoir, VA: Defense Technical Information Center, ottobre 2012. http://dx.doi.org/10.21236/ada570217.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Marshall, Renee M. Regulation of T-Type Cyclin/CDK9 Complexes in Breast Cancer Cells. Fort Belvoir, VA: Defense Technical Information Center, luglio 2005. http://dx.doi.org/10.21236/ada460789.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!

Vai alla bibliografia