Letteratura scientifica selezionata sul tema "Surveillance distribuée"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Surveillance distribuée".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Surveillance distribuée"
C N, Dr Sowmyarani, Lavanya Naik e Sangeetha S. "Security Analysis on Surveillance System". International Journal for Research in Applied Science and Engineering Technology 11, n. 7 (31 luglio 2023): 2195–201. http://dx.doi.org/10.22214/ijraset.2023.55016.
Testo completoVelastin, S. A. "Editorial: Intelligent distributed surveillance systems". IEE Proceedings - Vision, Image, and Signal Processing 152, n. 2 (2005): 191. http://dx.doi.org/10.1049/ip-vis:20059045.
Testo completoDetmold, Henry, Anton van den Hengel, Anthony Dick, Katrina Falkner, David S. Munro e Ron Morrison. "Middleware for Distributed Video Surveillance". IEEE Distributed Systems Online 9, n. 2 (febbraio 2008): 1. http://dx.doi.org/10.1109/mdso.2008.7.
Testo completoPan, Jin Xue. "A Load Balancing Mechanism for Video Surveillance System". Advanced Materials Research 1049-1050 (ottobre 2014): 2079–83. http://dx.doi.org/10.4028/www.scientific.net/amr.1049-1050.2079.
Testo completoValera, M., e S. A. Velastin. "Intelligent distributed surveillance systems: a review". IEE Proceedings - Vision, Image, and Signal Processing 152, n. 2 (2005): 192. http://dx.doi.org/10.1049/ip-vis:20041147.
Testo completoKavalionak, Hanna, Claudio Gennaro, Giuseppe Amato, Claudio Vairo, Costantino Perciante, Carlo Meghini e Fabrizio Falchi. "Distributed Video Surveillance Using Smart Cameras". Journal of Grid Computing 17, n. 1 (25 ottobre 2018): 59–77. http://dx.doi.org/10.1007/s10723-018-9467-x.
Testo completoComaniciu, Dorin, Fabio Berton e Visvanathan Ramesh. "Adaptive Resolution System for Distributed Surveillance". Real-Time Imaging 8, n. 5 (ottobre 2002): 427–37. http://dx.doi.org/10.1006/rtim.2002.0298.
Testo completoPennisi, A., F. Previtali, F. Ficarola, D. D. Bloisi, L. Iocchi e A. Vitaletti. "Distributed Sensor Network for Multi-robot Surveillance". Procedia Computer Science 32 (2014): 1095–100. http://dx.doi.org/10.1016/j.procs.2014.05.538.
Testo completoRemagnino, P., A. I. Shihab e G. A. Jones. "Distributed intelligence for multi-camera visual surveillance". Pattern Recognition 37, n. 4 (aprile 2004): 675–89. http://dx.doi.org/10.1016/j.patcog.2003.09.017.
Testo completoFarley, Ryan, e Xinyuan Wang. "Roving bugnet: Distributed surveillance threat and mitigation". Computers & Security 29, n. 5 (luglio 2010): 592–602. http://dx.doi.org/10.1016/j.cose.2009.12.002.
Testo completoTesi sul tema "Surveillance distribuée"
Nazarpour, Hosein. "Surveillance de systèmes à composants multi-threads et distribués". Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAM027/document.
Testo completoComponent-based design is the process leading from given requirements and a set of predefined components to a system meeting the requirements. Components are abstract building blocks encapsulating behavior. They can be composed in order to build composite components. Their composition should be rigorously defined so that it is possible to infer the behavior of composite components from the behavior of their constituents as well as global properties from the properties of individual components. It is, however, generally not possible to ensure or verify the desired property using static verification techniques such as model-checking or static analysis, either because of the state-space explosion problem or because the property can only be decided with information available at runtime (e.g., from the user or the environment). Runtime Verification (RV) is an umbrella term denoting the languages, techniques, and tools for the dynamic verification of system executions against formally-specified behavioral properties. In this context, a run of the system under scrutiny is analyzed using a decision procedure: a monitor. Generally, the monitor may be generated from a user-provided specification (e.g., a temporal-logic formula, an automaton), performs a step-by-step analysis of an execution captured as a sequence of system states, and produces a sequence of verdicts (truth-values taken from a truth-domain) indicating specification satisfaction or violation.This thesis addresses the problem of runtime monitoring multi-threaded and distributed component-based systems with multi-party interactions (CBSs). Although, neither the exact model nor the behavior of the system are known (black box system), the semantic of such CBSs can be modeled with labeled transition systems (LTSs). Inspiring from conformance testing theory, we refer to this as the monitoring hypothesis. Our monitoring hypothesis makes our approach oblivious of (i) the behavior of the CBSs, and (ii) how this behavior is obtained. We consider a general abstract semantic model of CBSs consisting of a set of intrinsically independent components whose interactions are managed by several schedulers. Using such an abstract model, one can obtain systems with different degrees of parallelism, such as sequential, multi-threaded and distributed systems. When monitoring concurrent (multi-threaded and distributed) CBSs, the problem that arises is that a global state of the system is not available at runtime, since the schedulers execute interactions even by knowing the partial state of the system. Moreover, in distributed systems the total ordering of the execution of the interaction is not observable. A naive solution to these problems would be to plug in a monitor which would however force the system to synchronize in order to obtain the sequence of global states as well as the total ordering of the executions at runtime Such a solution would defeat the whole purpose of having concurrent executions and distributed systems. We define two approaches for the monitoring of multi-threaded and distributed CBSs. In both approaches, we instrument the system to retrieve the local events of the schedulers. Local events are sent to an online monitor which reconstructs on-the-fly the set of global traces that are i) compatible with the local traces of the schedulers, and ii) suitable for monitoring purposes, in a concurrency-preserving fashion
Venturino, Antonello. "Constrained distributed state estimation for surveillance missions using multi-sensor multi-robot systems". Electronic Thesis or Diss., université Paris-Saclay, 2022. http://www.theses.fr/2022UPAST118.
Testo completoDistributed algorithms have pervaded many aspects of control engineering with applications for multi-robot systems, sensor networks, covering topics such as control, state estimation, fault detection, cyber-attack detection and mitigation on cyber-physical systems, etc. Indeed, distributed schemes face problems like scalability and communication between agents. In multi-agent systems applications (e.g. fleet of mobile robots, sensor networks) it is now common to design state estimation algorithms in a distributed way so that the agents can accomplish their tasks based on some shared information within their neighborhoods. In surveillance missions, a low-cost static Sensor Network (e.g. with cameras) could be deployed to localize in a distributed way intruders in a given area. In this context, the main objective of this work is to design distributed observers to estimate the state of a dynamic system (e.g. a multi-robot system) that efficiently handle constraints and uncertainties but with reduced computation load. This PhD thesis proposes new Distributed Moving Horizon Estimation (DMHE) algorithms with a Luenberger pre-estimation in the formulation of the local problem solved by each sensor, resulting in a significant reduction of the computation time, while preserving the estimation accuracy. Moreover, this manuscript proposes a consensus strategy to enhance the convergence time of the estimates among sensors while dealing with weak unobservability conditions (e.g. vehicles not visible by some cameras). Another contribution concerns the improvement of the convergence of the estimation error by mitigating unobservability issues by using a l-step neighborhood information spreading mechanism. The proposed distributed estimation is designed for realistic large-scale systems scenarios involving sporadic measurements (i.e. available at time instants a priori unknown). To this aim, constraints on measurements (e.g. camera field of view) are embodied using time-varying binary parameters in the optimization problem. Both realistic simulations within the Robot Operating System (ROS) framework and Gazebo environment, as well as experimental validation of the proposed DMHE localization technique of a Multi-Vehicle System (MVS) with ground mobile robots are performed, using a static Sensor Network composed of low-cost cameras which provide measurements on the positions of the robots of the MVS. The proposed algorithms are compared to previous results from the literature, considering several metrics such as computation time and accuracy of the estimates
Renzaglia, Alessandro. "Optimisation stochastique et adaptative pour surveillance coopérative par une équipe de micro-véhicules aériens". Phd thesis, Université de Grenoble, 2012. http://tel.archives-ouvertes.fr/tel-00721748.
Testo completoRoux, Julien. "Conception d'un capteur distribué pour la surveillance de l'état hydrique des sols". Thesis, Toulouse, INSA, 2017. http://www.theses.fr/2017ISAT0031/document.
Testo completoOwing to the development of the smart farming, some new studies need to be lead on a distributed instrumentation to measure soil moisture to control the irrigation.In the project IRRIS context, we realize a smart soil moisture sensor. First, we have to realize the sensing element of this sensor. We choose a capacitive detection to get a reactive sensor despite low cost. The body is a cylinder to be easily buried in the soil. The electrodes are made by electrochemical deposition on the plastic tube. Then, we design the measurement electronic. We compare two solutions, one with discrete components and the other software on embedded microcontroller. We submit those electronics at thermic variations to observe their comportment to create the law of compensation. Next we assemble the sensor according to two ways. The first, the multi sensor, forces the depths of sensing but reduces the costs by pooling the measurement electronic. The second, the mono sensor, frees the choice of depth but multiplies the number of sensors. We create at this step the sensor network thanks a wireless communication placed on 868MHz, an ISM band that we characterize in terms of range depending on the flow rate to optimize this communication. Finally, we observe the results of three measurement campaigns to validate the operating for different soil and cultures.This study ends in the realization of a sensor to measure soil moisture with a reduced cost relative to the industrial sensor on the market. Experiments prove its ease of use as well as its proper functioning
Marshall, Michael Brian. "A Swarm Intelligence Approach to Distributed Mobile Surveillance". Thesis, Virginia Tech, 2005. http://hdl.handle.net/10919/35120.
Testo completoMaster of Science
Zajdel, Wojciech Piotr. "Bayesian visual surveillance from object detection to distributed cameras /". [S.l. : Amsterdam : s.n.] ; Universiteit van Amsterdam [Host], 2005. http://dare.uva.nl/document/18901.
Testo completoBOUFAIED, Amine. "Contribution à la surveillance distribuée des systèmes à événements discrets complexes". Phd thesis, Université Paul Sabatier - Toulouse III, 2003. http://tel.archives-ouvertes.fr/tel-00010972.
Testo completoBoufaied, Amine. "Contribution à la surveillance distribuée des systèmes à évènements discrets complexes". Toulouse 3, 2003. http://www.theses.fr/2003TOU30234.
Testo completoDi, Caterina Gaetano. "Video analyytics algorithms and distributed solutions for smart video surveillance". Thesis, University of Strathclyde, 2013. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=18949.
Testo completoSalhi, Miyassa. "Étude d’un système de surveillance de structure par fibre optique reposant sur l’effet Brillouin". Thesis, Paris Est, 2020. http://www.theses.fr/2020PESC2031.
Testo completoThe use of distributed sensors fiber optic delivering information in each point of the fiber is an important tool for large-scale structures surveillance strategies in civil engineering. The spontaneous Brillouin scattering phenomenon (or stimulated) in the field of sensors optical fiber is subject to strong scientific inquiry since the 1990s. The proposed industrial solutions are based on the spectral analysis of the Stokes wavelength backscattered along the length of the fiber. Thus, a B-OTDR device (Brillouin Optical Time-Domain Reflectometer) can perform a measurement of the shift of the Brillouin frequency (of the order of 11GHz around 1.55 µm) with a metric spatial resolution and sensitivity of the strain measurements and temperature respectively of about 10 µm/m and 0.5 °C, but at a high cost (about 100k€) which limits their use. This thesis is oriented towards the study of a monitoring system based on the use of a bi-frequency bi-polarization source, which would make it possible to remedy the drawbacks of conventional systems and have equivalent performances with state of the art solutions
Libri sul tema "Surveillance distribuée"
A, Velastin Sergio, Remagnino Paolo 1963- e Institution of Electrical Engineers, a cura di. Intelligent distributed video surveillance systems. London: Institution of Electrical Engineers, 2006.
Cerca il testo completoRemagnino, Paolo. Video-Based Surveillance Systems: Computer Vision and Distributed Processing. Boston, MA: Springer US, 2002.
Cerca il testo completo1963-, Remagnino Paolo, a cura di. Video-based surveillance systems: Computer vision and distributed processing. Boston: Kluwer Academic Publishers, 2002.
Cerca il testo completoDistributed video sensor networks-research challenges and future directions workshop (2009 : Riverside, Calif.), a cura di. Distributed video sensor networks. London: Springer, 2011.
Cerca il testo completoNetwork, IEE Visual Information Engineering Professional. Intelligent distributed surveillance systems: (IDSS-04) : Monday, 23 February 2004, the IEE, Savoy Place, London, UK. Stevenage, Herts: Institution of Electrical Engineers, 2004.
Cerca il testo completoWood, J. Local energy: Distributed generation of heat and power. London: Institution of Engineering and Technology, 2008.
Cerca il testo completoRemagnino, Paolo, e Sergio A. Velastin. Intelligent Distributed Video Surveillance Systems. Institution of Engineering & Technology, 2011.
Cerca il testo completo(Editor), Paolo Remagnino, Graeme A. Jones (Editor), Nikos Paragios (Editor) e Carlo S. Regazzoni (Editor), a cura di. Video-Based Surveillance Systems: Computer Vision and Distributed Processing. Springer, 2001.
Cerca il testo completoParagios, Nikos, Carlo S. Regazzoni e Graeme A. Jones. Video-Based Surveillance Systems: Computer Vision and Distributed Processing. Springer, 2012.
Cerca il testo completo(Editor), Sergio Velastin, e Paolo Remagnino (Editor), a cura di. Intelligent Distributed Video Surveillance Systems (Professional Applications of Computing) (Professional Applications of Computing). Institution of Engineering and Technology, 2006.
Cerca il testo completoCapitoli di libri sul tema "Surveillance distribuée"
Foresti, G. L., e L. Snidaro. "A Distributed Sensor Network for Video Surveillance of Outdoors". In Multisensor Surveillance Systems, 7–27. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-0371-2_1.
Testo completoMarcenaro, L., L. Marchesotti e C. S. Regazzoni. "Distributed Metadata Extraction Strategies in a Multi-Resolution Dual Camera System". In Multisensor Surveillance Systems, 29–41. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-0371-2_2.
Testo completoRasheed, Zeeshan, Khurram Shafique, Li Yu, Munwai Lee, Krishnan Ramnath, TeaEun Choe, Omar Javed e Niels Haering. "Distributed Sensor Networks for Visual Surveillance". In Distributed Video Sensor Networks, 439–49. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-127-1_29.
Testo completoVarshney, Pramod K., e Ioana L. Coman. "Distributed Multi-Sensor Surveillance: Issues and Recent Advances". In Video-Based Surveillance Systems, 239–50. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-0913-4_20.
Testo completoAgarwal, Pankaj K., Esther Ezra e Shashidhara K. Ganjugunte. "Efficient Sensor Placement for Surveillance Problems". In Distributed Computing in Sensor Systems, 301–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02085-8_22.
Testo completoCaffarelli, Luis, Valentino Crespi, George Cybenko, Irene Gamba e Daniela Rus. "Stochastic Distributed Algorithms for Target Surveillance". In Intelligent Systems Design and Applications, 137–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-44999-7_14.
Testo completoOberti, Franco, Giancarlo Ferrari e Carlo S. Regazzoni. "A Comparison between Continuous And Burst, Recognition Driven Transmission Policies in Distributed 3GSS". In Video-Based Surveillance Systems, 267–78. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-0913-4_22.
Testo completoSoldatini, F., P. Mähönen, M. Saaranen e C. S. Regazzoni. "Network Management Within an Architecture for Distributed Hierarchial Digital Surveillance Systems". In Multimedia Video-Based Surveillance Systems, 143–57. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4327-5_13.
Testo completoNguyen, Hoang Thanh, e Bir Bhanu. "VideoWeb: Optimizing a Wireless Camera Network for Real-time Surveillance". In Distributed Video Sensor Networks, 321–34. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-127-1_22.
Testo completoFarley, Ryan, e Xinyuan Wang. "Roving Bugnet: Distributed Surveillance Threat and Mitigation". In Emerging Challenges for Security, Privacy and Trust, 39–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01244-0_4.
Testo completoAtti di convegni sul tema "Surveillance distribuée"
Dias, Hugo, Joao Rocha, Paulo Silva, Carlos Leao e Luis Paulo Reis. "Distributed Surveillance System". In 2005 Purtuguese Conference on Artificial Intelligence. IEEE, 2005. http://dx.doi.org/10.1109/epia.2005.341225.
Testo completoBenaskeur, Abderrezak, Alaa Khamis e Hengameh Irandoust. "Cooperation in distributed surveillance". In 2010 International Conference on Autonomous and Intelligent Systems (AIS). IEEE, 2010. http://dx.doi.org/10.1109/ais.2010.5547043.
Testo completoKnight, D. M. G. "The legal implications of intelligent distributed surveillance systems". In IEE Symposium Intelligent Distributed Surveillance Systems. IEE, 2003. http://dx.doi.org/10.1049/ic:20030028.
Testo completoHeath, C. "Organising surveillance: conduct, context and the management of events". In IEE Symposium Intelligent Distributed Surveillance Systems. IEE, 2003. http://dx.doi.org/10.1049/ic:20030029.
Testo completoSands, L. "AMETHYST: automatic alarm assessment for perimeter intrusion detection systems (PIDS)". In IEE Symposium Intelligent Distributed Surveillance Systems. IEE, 2003. http://dx.doi.org/10.1049/ic:20030030.
Testo completoMicheloni, C. "A cooperative multicamera system for video-surveillance of parking lots". In IEE Symposium Intelligent Distributed Surveillance Systems. IEE, 2003. http://dx.doi.org/10.1049/ic:20030031.
Testo completoValera, M. "An approach for designing a real-time intelligent distributed surveillance system". In IEE Symposium Intelligent Distributed Surveillance Systems. IEE, 2003. http://dx.doi.org/10.1049/ic:20030032.
Testo completoCupillard, F. "Behaviour recognition for individuals, groups of people and crowd". In IEE Symposium Intelligent Distributed Surveillance Systems. IEE, 2003. http://dx.doi.org/10.1049/ic:20030033.
Testo completoBerriss, W. P. "The use of MPEG-7 for intelligent analysis and retrieval in video surveillance". In IEE Symposium Intelligent Distributed Surveillance Systems. IEE, 2003. http://dx.doi.org/10.1049/ic:20030034.
Testo completoGrant, K. "RETRIEVE - REaltime Tagging and Retrieval of Images Eligible for use as Video Evidence". In IEE Symposium Intelligent Distributed Surveillance Systems. IEE, 2003. http://dx.doi.org/10.1049/ic:20030035.
Testo completoRapporti di organizzazioni sul tema "Surveillance distribuée"
Dhillon, Santpal S., e Krishnendu Chakrabarty. Sensor Placement for Effective Coverage and Surveillance in Distributed Sensor Networks. Fort Belvoir, VA: Defense Technical Information Center, gennaio 2003. http://dx.doi.org/10.21236/ada445754.
Testo completoDowns, Michael L. In Pursuit of 21st Century Distributed Intelligence Surveillance and Reconnaissance Operations. Fort Belvoir, VA: Defense Technical Information Center, febbraio 2011. http://dx.doi.org/10.21236/ad1018712.
Testo completoBhattacharya, Tanmoy. Data-aware distributed scientific computing for big-data problems in bio-surveillance. Office of Scientific and Technical Information (OSTI), settembre 2013. http://dx.doi.org/10.2172/1092438.
Testo completoZeger, Kenneth, e Laurence Milstein. Cooperative Communication for Tracking and Surveillance Using Multiple Related Observations and Distributed Transmitters. Fort Belvoir, VA: Defense Technical Information Center, dicembre 2010. http://dx.doi.org/10.21236/ada550358.
Testo completo