Letteratura scientifica selezionata sul tema "Surface tension"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Surface tension".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Surface tension"
Yang, Jinlong, Joseph M Michaud, Steven Jansen, H. Jochen Schenk e Yi Y. Zuo. "Dynamic surface tension of xylem sap lipids". Tree Physiology 40, n. 4 (6 febbraio 2020): 433–44. http://dx.doi.org/10.1093/treephys/tpaa006.
Testo completoPatterson, Ada M. "Surface Tension". Caribbean Quarterly 68, n. 3 (3 luglio 2022): 319–24. http://dx.doi.org/10.1080/00086495.2022.2105011.
Testo completoMirsky, Steve. "Surface Tension". Scientific American 305, n. 4 (20 settembre 2011): 92. http://dx.doi.org/10.1038/scientificamerican1011-92.
Testo completoX-Gal. "Surface tension". Journal of Cell Science 122, n. 14 (1 luglio 2009): 2323–24. http://dx.doi.org/10.1242/jcs.055871.
Testo completoEdge, R. D. "Surface tension". Physics Teacher 26, n. 9 (dicembre 1988): 586–87. http://dx.doi.org/10.1119/1.2342636.
Testo completoSajdera, Norbert. "Surface tension". Metal Finishing 98, n. 1 (gennaio 2000): 609–10. http://dx.doi.org/10.1016/s0026-0576(00)80368-2.
Testo completoSajdera, Norbert. "Surface tension". Metal Finishing 97, n. 1 (gennaio 1999): 609–10. http://dx.doi.org/10.1016/s0026-0576(00)83119-0.
Testo completoSajdera, Norbert. "Surface tension". Metal Finishing 105, n. 10 (2007): 528–30. http://dx.doi.org/10.1016/s0026-0576(07)80370-9.
Testo completoSajdera, Norbert. "Surface tension". Metal Finishing 99 (gennaio 2001): 604–5. http://dx.doi.org/10.1016/s0026-0576(01)85319-8.
Testo completoSajdera, Norbert. "Surface tension". Metal Finishing 100 (gennaio 2002): 599–600. http://dx.doi.org/10.1016/s0026-0576(02)82062-1.
Testo completoTesi sul tema "Surface tension"
Laverty, Rory. "Surface tension /". Electronic version (PDF), 2007. http://dl.uncw.edu/etd/2007-1/r1/lavertyr/rorylaverty.pdf.
Testo completoThompson, Alice B. "Surface-tension-driven coalescence". Thesis, University of Nottingham, 2012. http://eprints.nottingham.ac.uk/12522/.
Testo completoFröba, Andreas P., Cristina Botero, Heiko Kremer e Alfred Leipertz. "Liquid viscosity and surface tension by surface light scattering". Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-196257.
Testo completoFröba, Andreas P., Cristina Botero, Heiko Kremer e Alfred Leipertz. "Liquid viscosity and surface tension by surface light scattering". Diffusion fundamentals 2 (2005) 69, S. 1-2, 2005. https://ul.qucosa.de/id/qucosa%3A14402.
Testo completoMatthews, Thomas Robert. "Surface Properties of Poly(ethylene terephthalate)". University of Toledo / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1177515548.
Testo completoClewett, James. "Emergent surface tension in boiling granular media". Thesis, University of Nottingham, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.604898.
Testo completoGreen, James Alexander. "Mixing in surface tension driven microchannel flows". Thesis, University of Hertfordshire, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.440160.
Testo completoCho, Han-Jae Jeremy. "Surface tension and electroporation of lipid bilayers". Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/67612.
Testo completoCataloged from PDF version of thesis.
Includes bibliographical references (p. 78-79).
Electroporation of lipid bilayers is widely used in DNA transfection, gene therapy, and targeted drug delivery and has potential applications in water desalination and filtration. A better, more thorough molecular understanding is needed, however, before such devices can be effectively used and developed. From aqueous pore formation theory, electroporation behavior is known to be largely dictated by surface energy. We hypothesize that this surface energy can be described by separate head and tail components of the lipid molecules, which can be obtained experimentally. In this thesis, we demonstrated a basic ability to electroporate lipid bilayers as well as verify its electrical behavior. We formed lipid monolayer and bilayer films and studied their wetting properties using water, formamide, and diiodomethane. We determined that the strong interaction between polar liquids (water and formamide) and hydrophilic substrates (mica and glass) can affect the wetting behavior and quality of films. In addition, we verified that the resulting surface energy of lipid tails is mostly nonpolar. The insights of this work offer a first step towards characterizing the surface energies of different lipids and how they relate to the electroporation behavior.
by Han-Jae Jeremy Cho.
S.M.
Zhao, Yajing S. M. Massachusetts Institute of Technology. "Dropwise condensation of water and low surface tension fluids on structured surfaces". Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/118679.
Testo completoCataloged from PDF version of thesis.
Includes bibliographical references (pages 55-57).
Condensation is a ubiquitous process often observed in nature and our daily lives. The large amount of latent heat released during the condensation process has been harnessed in many industrial processes such as power generation, building heating and cooling, desalination, dew harvesting, thermal management, and refrigeration. Condensation has two modes: dropwise mode and filmwise mode. Although it has been known for decades that dropwise condensation outperforms filmwise condensation in heat transfer owing to the droplet shedding effects which can efficiently reduce thermal resistance, filmwise condensation still dominates industrial applications currently due to the high costs, low robustness and technical challenges of manufacturing dropwise coatings. During water condensation, dropwise mode can be readily promoted with thin hydrophobic coatings. Superhydrophobic surfaces made out of hydrophobic coatings on micro-or-nano-engineered surfaces have shown further heat transfer enhancement in dropwise condensation of water; however, the applications of these micro- or nanoscale structured surface designs have been restricted by the high manufacturing expenses and short range of subcooling limit. Recent studies have shown that the combination of millimeter sized geometric features and plain hydrophobic coatings can effectively manipulate droplet distribution of water condensate, which provides opportunities to locally facilitate dropwise condensation at relatively low manufacturing expenses as compared to those delicate micro- and nano-structured hydrophobic surfaces. Low surface tension fluids such as hydrocarbons pose a unique challenge to achieving dropwise condensation, because common hydrophobic coatings are not capable of repelling low surface tension fluids. Recent development in lubricant infused surfaces (LIS) offers promising solutions to achieving dropwise condensation of low surface tension fluids by replacing the solid-condensate interface in conventional hydrophobic coatings with a smooth lubricant-condensate interface. However, only a few experimental studies have applied LIS to promoting dropwise condensation of low surface tension fluids (y as low as 15 mN/m). In this work, we investigated dropwise condensation of both water (y ~ 72 mN/m) and a low surface tension fluid, namely butane (y - 13 mN/m) on structured surfaces. For water condensation, we studied the effects of millimeter sized geometric structures on dropwise condensation heat transfer under two different environments: pure vapor and an air-vapor mixture. Our experimental results show that, although convex structures enable faster droplet growth in an air-vapor mixture, the same structures impose the opposite effect during pure vapor condensation, hindering droplet growth. We developed a numerical model for each case to predict the heat flux distribution along the structured surface, and the model shows good agreement with experimental results. This work demonstrates that the effects of geometric features on dropwise condensation are not invariable but rather dependent on the scenario of resistances to heat and mass transfer in the system. For butane condensation, based on a design guideline we recently developed for lubricant infused surfaces, we successfully designed an energy-favorable combination of lubricant and structured solid substrate, which was further demonstrated to promote dropwise condensation of butane. The fundamental understanding of dropwise condensation of water and low surface tension fluids on structured surfaces developed in this study provides useful guidelines for condensation applications including power generation, desalination, dew harvesting, and thermal management.
by Yajing Zhao.
S.M.
Saksono, Prihambodo Hendro. "On finite element modelling of surface tension phenomena". Thesis, Swansea University, 2002. https://cronfa.swan.ac.uk/Record/cronfa42392.
Testo completoLibri sul tema "Surface tension"
Phillips, Steve. Surface tension. Lewiston, NY: Mellon Poetry Press, 1996.
Cerca il testo completoSaul, Anne-Marie. Surface tension. Dublin: University College Dublin, 2002.
Cerca il testo completoKling, Christine. Surface tension. Waterville, Me: Thorndike Press, 2003.
Cerca il testo completoMullin, Mike. Surface tension. Indianapolis, IN: Tanglewood Press, 2018.
Cerca il testo completoClark-Langager, Sarah A. Surface tension. [Bellingham, Wash: Western Gallery, Western Washington University, 2003.
Cerca il testo completoWestbury, Deb. Surface tension. Wollongong [N.S.W.]: Five Islands Press, 1998.
Cerca il testo completoFranchesi, Marisa De. Surface tension. Toronto: Guernica, 1994.
Cerca il testo completoRowe, Elisabeth. Surface tension. Calstock: Peterloo Poets, 2003.
Cerca il testo completoFranceshi, Marise De. Surface tension. Montréal, Qué: Guernica, 1994.
Cerca il testo completoFranceschi, Marisa De. Surface tension. Toronto: Guernica, 1994.
Cerca il testo completoCapitoli di libri sul tema "Surface tension"
Gooch, Jan W. "Surface Tension". In Encyclopedic Dictionary of Polymers, 717–18. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_11445.
Testo completoGooch, Jan W. "Surface Tension". In Encyclopedic Dictionary of Polymers, 718. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_11446.
Testo completoTadros, Tharwat. "Surface Tension". In Encyclopedia of Colloid and Interface Science, 1052. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-20665-8_152.
Testo completoBahr, Benjamin, Boris Lemmer e Rina Piccolo. "Surface Tension". In Quirky Quarks, 34–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49509-4_9.
Testo completoWilliams, Paul Melvyn. "Surface Tension". In Encyclopedia of Membranes, 1871. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-44324-8_1005.
Testo completoOprea, John. "Surface tension". In The Mathematics of Soap Films: Explorations with Maple®, 1–30. Providence, Rhode Island: American Mathematical Society, 2000. http://dx.doi.org/10.1090/stml/010/01.
Testo completoWilliams, Paul Melvyn. "Surface Tension". In Encyclopedia of Membranes, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-40872-4_1005-1.
Testo completoGooch, Jan W. "Surface Tension". In Encyclopedic Dictionary of Polymers, 926. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_14901.
Testo completoNappi, Carla. "Surface tension". In Early Modern Things, 29–50. 2a ed. 2nd edition. | New York: Routledge, 2021. | Series: Early modern themes: Routledge, 2021. http://dx.doi.org/10.4324/9781351055741-3.
Testo completoQasem, Naef A. A., Muhammad M. Generous, Bilal A. Qureshi e Syed M. Zubair. "Surface Tension". In Springer Water, 265–79. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-35193-8_13.
Testo completoAtti di convegni sul tema "Surface tension"
Plant, Nicola, e Patrick G. T. Healey. "Surface tension". In CHI '13 Extended Abstracts on Human Factors in Computing Systems. New York, New York, USA: ACM Press, 2013. http://dx.doi.org/10.1145/2468356.2479589.
Testo completoLamorgese, A., e R. Mauri. "Nonequilibrium surface tension". In THE SECOND ICRANET CÉSAR LATTES MEETING: Supernovae, Neutron Stars and Black Holes. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4937312.
Testo completoNeumann, Burkhard, Horst Engel e Bernd Schleifenbaum. "Surface Tension Microscopy". In 33rd Annual Techincal Symposium, a cura di John E. Wampler. SPIE, 1989. http://dx.doi.org/10.1117/12.962712.
Testo completoReivinen, M., e E. M. Salonen. "Surface tension problems with distributed torque". In CONTACT AND SURFACE 2013. Southampton, UK: WIT Press, 2013. http://dx.doi.org/10.2495/secm130071.
Testo completoLee, Ki Bang, Firas Sammoura e Liwei Lin. "Surface Tension Propelled Microboats". In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-60680.
Testo completoAdamski, Przemyslaw, Agnieszka L. Gromiec, Mariusz Panak e Marek Wojciechowski. "Surface tension of MBBA". In Liquid and Solid State Crystals: Physics, Technology, and Applications, a cura di Jozef Zmija. SPIE, 1993. http://dx.doi.org/10.1117/12.156977.
Testo completoPline, A., T. Jacobson, Y. Kamotani e S. Ostrach. "Surface Tension Driven Convection Experiment". In Space Programs and Technologies Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1993. http://dx.doi.org/10.2514/6.1993-4312.
Testo completoNasr-El-Din, H. A., M. B. Al-Otaibi, A. M. Al-Aamri e N. Ginest. "Surface Tension of Completion Brines". In SPE International Symposium on Oilfield Chemistry. Society of Petroleum Engineers, 2005. http://dx.doi.org/10.2118/93421-ms.
Testo completoHochstein, J., e T. Williams. "An implicit surface tension model". In 34th Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-599.
Testo completoKim, Chang-Jin. "Micromachines driven by surface tension". In 30th Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1999. http://dx.doi.org/10.2514/6.1999-3800.
Testo completoRapporti di organizzazioni sul tema "Surface tension"
Turchi, Patrice A. Viscosity and Surface Tension of Metals. Office of Scientific and Technical Information (OSTI), aprile 2018. http://dx.doi.org/10.2172/1438687.
Testo completoXu, Y., C. W. Angle e H. A. Hamza. Dynamic and equilibrium surface tension of aqueous polyacrylamide solutions. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1992. http://dx.doi.org/10.4095/305309.
Testo completoWeatherby, J. R., R. D. Krieg e C. M. Stone. Incorporation of surface tension into the structural finite element code SANCHO. Office of Scientific and Technical Information (OSTI), marzo 1989. http://dx.doi.org/10.2172/6185598.
Testo completoFondeur, F., e T. Peters. DYNAMIC SURFACE TENSION AND DIFFUSIVITY MEASUREMENTS OF NG-CSSX NEXT GENERATION SOLVENT. Office of Scientific and Technical Information (OSTI), maggio 2014. http://dx.doi.org/10.2172/1135785.
Testo completoMorris, J. Technical Note: Description of Surface Tension as Implemented In LDEC-SPH Module. Office of Scientific and Technical Information (OSTI), febbraio 2009. http://dx.doi.org/10.2172/948975.
Testo completoZhang, X., M. T. Harris e O. A. Basaran. A new method for measuring the dynamic surface tension of complex-mixture liquid drops. Office of Scientific and Technical Information (OSTI), giugno 1994. http://dx.doi.org/10.2172/110695.
Testo completoNorton, J. D., e L. R. Pederson. Ammonia in simulated Hanford double-shell tank wastes: Solubility and effects on surface tension. Office of Scientific and Technical Information (OSTI), settembre 1994. http://dx.doi.org/10.2172/10192447.
Testo completoGauglitz, Phillip A., Lenna A. Mahoney, Jeremy Blanchard e Judith A. Bamberger. Surface Tension Estimates for Droplet Formation in Slurries with Low Concentrations of Hydrophobic Particles, Polymer Flocculants or Surface-Active Contaminants. Office of Scientific and Technical Information (OSTI), giugno 2011. http://dx.doi.org/10.2172/1024544.
Testo completoWu, Qihau, Kathryn Kremer, Stephen Gibbons e Alan Kennedy. Determination of contact angle and surface tension of nanomaterial solutions by optical contact angle system. Engineer Research and Development Center (U.S.), luglio 2019. http://dx.doi.org/10.21079/11681/33395.
Testo completoHuber, Marcia L. Models for viscosity, thermal conductivity, and surface tension of selected pure fluids as implemented in REFPROP v10.0. Gaithersburg, MD: National Institute of Standards and Technology, agosto 2018. http://dx.doi.org/10.6028/nist.ir.8209.
Testo completo