Letteratura scientifica selezionata sul tema "Superquantiles"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Superquantiles".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Superquantiles"
Rio, Emmanuel. "Upper bounds for superquantiles of martingales". Comptes Rendus. Mathématique 359, n. 7 (17 settembre 2021): 813–22. http://dx.doi.org/10.5802/crmath.207.
Testo completoLaguel, Yassine, Krishna Pillutla, Jérôme Malick e Zaid Harchaoui. "Superquantiles at Work: Machine Learning Applications and Efficient Subgradient Computation". Set-Valued and Variational Analysis 29, n. 4 (dicembre 2021): 967–96. http://dx.doi.org/10.1007/s11228-021-00609-w.
Testo completoKala, Zdeněk. "Global Sensitivity Analysis of Quantiles: New Importance Measure Based on Superquantiles and Subquantiles". Symmetry 13, n. 2 (4 febbraio 2021): 263. http://dx.doi.org/10.3390/sym13020263.
Testo completoDedecker, Jérôme, e Florence Merlevède. "Central limit theorem and almost sure results for the empirical estimator of superquantiles/CVaR in the stationary case". Statistics 56, n. 1 (2 gennaio 2022): 53–72. http://dx.doi.org/10.1080/02331888.2022.2043325.
Testo completoMafusalov, Alexander, e Stan Uryasev. "CVaR (superquantile) norm: Stochastic case". European Journal of Operational Research 249, n. 1 (febbraio 2016): 200–208. http://dx.doi.org/10.1016/j.ejor.2015.09.058.
Testo completoRockafellar, R. Tyrrell, e Johannes O. Royset. "Superquantile/CVaR risk measures: second-order theory". Annals of Operations Research 262, n. 1 (9 febbraio 2016): 3–28. http://dx.doi.org/10.1007/s10479-016-2129-0.
Testo completoLaguel, Yassine, Jérôme Malick e Zaid Harchaoui. "Superquantile-Based Learning: A Direct Approach Using Gradient-Based Optimization". Journal of Signal Processing Systems 94, n. 2 (11 gennaio 2022): 161–77. http://dx.doi.org/10.1007/s11265-021-01716-5.
Testo completoRockafellar, R. T., J. O. Royset e S. I. Miranda. "Superquantile regression with applications to buffered reliability, uncertainty quantification, and conditional value-at-risk". European Journal of Operational Research 234, n. 1 (aprile 2014): 140–54. http://dx.doi.org/10.1016/j.ejor.2013.10.046.
Testo completoGolodnikov, Kuzmenko e Uryasev. "CVaR Regression Based on the Relation between CVaR and Mixed-Quantile Quadrangles". Journal of Risk and Financial Management 12, n. 3 (26 giugno 2019): 107. http://dx.doi.org/10.3390/jrfm12030107.
Testo completoLabopin-Richard, T., F. Gamboa, A. Garivier e B. Iooss. "Bregman superquantiles. Estimation methods and applications". Dependence Modeling 4, n. 1 (11 marzo 2016). http://dx.doi.org/10.1515/demo-2016-0004.
Testo completoTesi sul tema "Superquantiles"
Thurin, Gauthier. "Quantiles multivariés et transport optimal régularisé". Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0262.
Testo completoThis thesis is concerned with the study of the Monge-Kantorovich quantile function. We first address the crucial question of its estimation, which amounts to solve an optimal transport problem. In particular, we try to take advantage of the knowledge of the reference distribution, that represents additional information compared with the usual algorithms, and which allows us to parameterize the transport potentials by their Fourier series. Doing so, entropic regularization provides two advantages: to build an efficient and convergent algorithm for solving the semi-dual version of our problem, and to obtain a smooth and monotonic empirical quantile function. These considerations are then extended to the study of spherical data, by replacing the Fourier series with spherical harmonics, and by generalizing the entropic map to this non-Euclidean setting. The second main purpose of this thesis is to define new notions of multivariate superquantiles and expected shortfalls, to complement the information provided by the quantiles. These functions characterize the law of a random vector, as well as convergence in distribution under certain assumptions, and have direct applications in multivariate risk analysis, to extend the traditional risk measures of Value-at-Risk and Conditional-Value-at-Risk
Miranda, Sofia I. "Superquantile regression: theory, algorithms, and applications". Thesis, Monterey, California: Naval Postgraduate School, 2014. http://hdl.handle.net/10945/44618.
Testo completoWe present a novel regression framework centered on a coherent and averse measure of risk, the superquantile risk (also called conditional value-at-risk), which yields more conservatively fitted curves than classical least squares and quantile regressions. In contracts to other generalized regression techniques that approximate conditional superquantiles by various combinations of conditional quantiles, we directly and inperfect analog to classical regressional obtain superquantile regression functions as optimal solutions of certain error minimization problems. We show the existence and possible uniqueness of regression functions, discuss the stability of regression functions under perturbations and approximation of the underlying data, and propose an extension of the coefficient of determination R-squared and Cook’s distance for assessing the goodness of fit for both quantile and superquantile regression models. We present two classes of computational methods for solving the superquantile regression problem, compare both methods’ complexity, and illustrate the methodology in eight numerical examples in the areas of military applications, concerning mission employment of U.S. Navy helicopter pilots and Portuguese Navy submarines, reliability engineering, uncertainty quantification, and financial risk management.
Capitoli di libri sul tema "Superquantiles"
Miranda, Sofia Isabel. "Applying Superquantile Regression to a Real-World Problem: Submariners Effort Index Analysis". In Studies in Big Data, 115–22. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-24154-8_14.
Testo completoRockafellar, R. Tyrrell, e Johannes O. Royset. "Superquantiles and Their Applications to Risk, Random Variables, and Regression". In Theory Driven by Influential Applications, 151–67. INFORMS, 2013. http://dx.doi.org/10.1287/educ.2013.0111.
Testo completoAtti di convegni sul tema "Superquantiles"
Laguel, Yassine, Jerome Malick e Zaid Harchaoui. "First-Order Optimization for Superquantile-Based Supervised Learning". In 2020 IEEE 30th International Workshop on Machine Learning for Signal Processing (MLSP). IEEE, 2020. http://dx.doi.org/10.1109/mlsp49062.2020.9231909.
Testo completoLaguel, Yassine, Krishna Pillutla, Jerome Malick e Zaid Harchaoui. "A Superquantile Approach to Federated Learning with Heterogeneous Devices". In 2021 55th Annual Conference on Information Sciences and Systems (CISS). IEEE, 2021. http://dx.doi.org/10.1109/ciss50987.2021.9400318.
Testo completoRapporti di organizzazioni sul tema "Superquantiles"
Rockafellar, R. T., e Johannes O. Royset. Superquantile/CVaR Risk Measures: Second-Order Theory. Fort Belvoir, VA: Defense Technical Information Center, luglio 2014. http://dx.doi.org/10.21236/ada615948.
Testo completoRockafellar, R. T., e Johannes O. Royset. Superquantile/CVaR Risk Measures: Second-Order Theory. Fort Belvoir, VA: Defense Technical Information Center, luglio 2015. http://dx.doi.org/10.21236/ada627217.
Testo completo