Indice
Letteratura scientifica selezionata sul tema "Stratégies de préhension"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Stratégies de préhension".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Stratégies de préhension"
Mathieu, Marie-Eve. "Diabetaction – Programme d’exercices pour personnes diabétiques de type 2 ou à risque : effets sur la pratique d’activités physiques, la condition physique, la qualité de vie et différents paramètres de santé". Applied Physiology, Nutrition, and Metabolism 33, n. 6 (dicembre 2008): 1259–60. http://dx.doi.org/10.1139/h08-100.
Testo completoTesi sul tema "Stratégies de préhension"
Reghem, Elodie. "Stratégies comportementales et cinématiques de la préhension chez les primates". Phd thesis, Toulon, 2012. http://tel.archives-ouvertes.fr/tel-00829107.
Testo completoBarbedette, Bertrand. "Pédalage du cycliste et préhension pollicidigitale : étude biomécanique et identification de stratégies motrices". Le Mans, 1999. http://www.theses.fr/1999LEMA1004.
Testo completoMichel, Cédric. "Stratégie de saisie pour une main robotisée à caractère anthropomorphique". Paris 6, 2006. http://www.theses.fr/2006PA066387.
Testo completoYesudasu, Santheep. "Cοntributiοn à la manipulatiοn de cοlis sοus cοntraintes par un tοrse humanοïde : applicatiοn à la dépaléttisatiοn autοnοme dans les entrepôts lοgistiques". Electronic Thesis or Diss., Normandie, 2024. https://theses.hal.science/tel-04874770.
Testo completoThis PhD thesis explores the development and implementation of URNik-AI, an AI-powered automated depalletizing system designed to handle cardboard boxes of varying sizes and weights using a dual-arm humanoid torso. The primary objective is to enhance the efficiency, accuracy, and reliability of industrial depalletizing tasks through the integration of advanced robotics, computer vision, and deep learning techniques.The URNik-AI system consists of two UR10 robotic arms equipped with six-axis force/torque sensors and gripper tool sets. An ASUS Xtion RGB-D camera is mounted on Dynamixel Pro H42 pan-tilt servos to capture high-resolution images and depth data. The software framework includes ROS Noetic, ROS 2, and the MoveIt framework, enabling seamless communication and coordination of complex movements. This system ensures high precision in detecting, grasping, and handling objects in diverse industrial environments.A significant contribution of this research is the implementation of deep learning models, such as YOLOv3 and YOLOv8, to enhance object detection and pose estimation capabilities. YOLOv3, trained on a dataset of 807 images, achieved F1-scores of 0.81 and 0.90 for single and multi-face boxes, respectively. The YOLOv8 model further advanced the system's performance by providing keypoint and skeleton detection capabilities, which are essential for accurate grasping and manipulation. The integration of point cloud data for pose estimation ensured precise localization and orientation of boxes.Comprehensive testing demonstrated the system's robustness, with high precision, recall, and mean average precision (mAP) metrics confirming its effectiveness. This thesis makes several significant contributions to the field of robotics and automation, including the successful integration of advanced robotics and AI technologies, the development of innovative object detection and pose estimation techniques, and the design of a versatile and adaptable system architecture