Letteratura scientifica selezionata sul tema "Stochastic simulation"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Stochastic simulation".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Stochastic simulation"
Balmer, David, e Brian D. Ripley. "Stochastic Simulation". Journal of the Operational Research Society 40, n. 2 (febbraio 1989): 201. http://dx.doi.org/10.2307/2583240.
Testo completoNelson, Barry L., e Brian D. Ripley. "Stochastic Simulation." Journal of the American Statistical Association 84, n. 405 (marzo 1989): 334. http://dx.doi.org/10.2307/2289887.
Testo completoMorgan, B. J. T., e B. D. Ripley. "Stochastic Simulation." Biometrics 44, n. 2 (giugno 1988): 628. http://dx.doi.org/10.2307/2531879.
Testo completoBalmer, David. "Stochastic Simulation". Journal of the Operational Research Society 40, n. 2 (febbraio 1989): 201–2. http://dx.doi.org/10.1057/jors.1989.26.
Testo completoBooker, Jane M. "Stochastic Simulation". Technometrics 30, n. 2 (maggio 1988): 231–32. http://dx.doi.org/10.1080/00401706.1988.10488373.
Testo completoBongiovanni, John. "Stochastic simulation". Environmental Software 3, n. 1 (marzo 1988): 45. http://dx.doi.org/10.1016/0266-9838(88)90009-3.
Testo completoClarke, Michael D., e Brian D. Ripley. "Stochastic Simulation." Statistician 36, n. 4 (1987): 430. http://dx.doi.org/10.2307/2348862.
Testo completoJunker, Brian W., e Brian D. Ripley. "Stochastic Simulation". Journal of Educational Statistics 16, n. 1 (1991): 82. http://dx.doi.org/10.2307/1165101.
Testo completoKemp, C. D., e B. D. Ripley. "Stochastic Simulation." Journal of the Royal Statistical Society. Series A (Statistics in Society) 151, n. 3 (1988): 565. http://dx.doi.org/10.2307/2983026.
Testo completoMo, Wen Hui. "Monte Carlo Simulation of Reliability for Gear". Advanced Materials Research 268-270 (luglio 2011): 42–45. http://dx.doi.org/10.4028/www.scientific.net/amr.268-270.42.
Testo completoTesi sul tema "Stochastic simulation"
Hellander, Stefan. "Stochastic Simulation of Reaction-Diffusion Processes". Doctoral thesis, Uppsala universitet, Avdelningen för beräkningsvetenskap, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-198522.
Testo completoeSSENCE
Drawert, Brian J. "Spatial Stochastic Simulation of Biochemical Systems". Thesis, University of California, Santa Barbara, 2013. http://pqdtopen.proquest.com/#viewpdf?dispub=3559784.
Testo completoRecent advances in biology have shown that proteins and genes often interact probabilistically. The resulting effects that arise from these stochastic dynamics differ significantly than traditional deterministic formulations, and have biologically significant ramifications. This has led to the development of computational models of the discrete stochastic biochemical pathways found in living organisms. These include spatial stochastic models, where the physical extent of the domain plays an important role; analogous to traditional partial differential equations.
Simulation of spatial stochastic models is a computationally intensive task. We have developed a new algorithm, the Diffusive Finite State Projection (DFSP) method for the efficient and accurate simulation of stochastic spatially inhomogeneous biochemical systems. DFSP makes use of a novel formulation of Finite State Projection (FSP) to simulate diffusion, while reactions are handled by the Stochastic Simulation Algorithm (SSA). Further, we adapt DFSP to three dimensional, unstructured, tetrahedral meshes in inclusion in the mature and widely usable systems biology modeling software URDME, enabling simulation of the complex geometries found in biological systems. Additionally, we extend DFSP with adaptive error control and a highly efficient parallel implementation for the graphics processing units (GPU).
In an effort to understand biological processes that exhibit stochastic dynamics, we have developed a spatial stochastic model of cellular polarization. Specifically we investigate the ability of yeast cells to sense a spatial gradient of mating pheromone and respond by forming a projection in the direction of the mating partner. Our results demonstrates that higher levels of stochastic noise results in increased robustness, giving support to a cellular model where noise and spatial heterogeneity combine to achieve robust biological function. This also highlights the importance of spatial stochastic modeling to reproduce experimental observations.
Homem, de Mello Tito. "Simulation-based methods for stochastic optimization". Diss., Georgia Institute of Technology, 1998. http://hdl.handle.net/1853/24846.
Testo completoMorton-Firth, Carl Jason. "Stochastic simulation of cell signalling pathways". Thesis, University of Cambridge, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.625063.
Testo completoCheung, Ricky. "Stochastic based football simulation using data". Thesis, Uppsala universitet, Matematiska institutionen, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-359835.
Testo completoDu, Manuel. "Stochastic simulation studies for honeybee breeding". Doctoral thesis, Humboldt-Universität zu Berlin, 2021. http://dx.doi.org/10.18452/22295.
Testo completoThe present work describes a stochastic simulation program for modelling honeybee populations under breeding conditions. The program was newly implemented to investigate and optimize different selection strategies. A first study evaluated in how far the program's predictions depend on the underlying genetic model. It was found that the finite locus model rather than the infinitesimal model should be used for long-term investigations. A second study shed light into the importance of controlled mating for honeybee breeding. It was found that breeding schemes with controlled mating are far superior to free-mating alternatives. Ultimately, a final study examined how successful breeding strategies can be designed so that they are sustainable in the long term. For this, short-term genetic progress has to be weighed against the avoidance of inbreeding in the long run. By extensive simulations, optimal selection intensities on the maternal and paternal paths could be determined for different sets of population parameters.
Vasan, Arunchandar. "Timestepped stochastic simulation of 802.11 WLANs". College Park, Md.: University of Maryland, 2008. http://hdl.handle.net/1903/8533.
Testo completoThesis research directed by: Dept. of Computer Science. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Hashemi, Fatemeh Sadat. "Sampling Controlled Stochastic Recursions: Applications to Simulation Optimization and Stochastic Root Finding". Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/76740.
Testo completoPh. D.
Albertyn, Martin. "Generic simulation modelling of stochastic continuous systems". Thesis, Pretoria : [s.n.], 2004. http://upetd.up.ac.za/thesis/available/etd-05242005-112442.
Testo completoXu, Zhouyi. "Stochastic Modeling and Simulation of Gene Networks". Scholarly Repository, 2010. http://scholarlyrepository.miami.edu/oa_dissertations/645.
Testo completoLibri sul tema "Stochastic simulation"
Stochastic simulation. New York: Wiley, 1987.
Cerca il testo completoRipley, Brian D., a cura di. Stochastic Simulation. Hoboken, NJ, USA: John Wiley & Sons, Inc., 1987. http://dx.doi.org/10.1002/9780470316726.
Testo completoShedler, G. S. Regenerative stochastic simulation. Boston: Academic Press, 1993.
Cerca il testo completosentralbyrå, Norway Statistisk, a cura di. Stochastic simulation of KVARTS91. Oslo: Statistisk sentralbyrå, 1993.
Cerca il testo completoMacKeown, P. K. Stochastic simulation in physics. New York: Springer, 1997.
Cerca il testo completoNelson, Barry L. Stochastic modeling: Analysis & simulation. Mineloa, N.Y: Dover Publications, 2002.
Cerca il testo completoBalakrishnan, N., V. B. Melas e S. Ermakov, a cura di. Advances in Stochastic Simulation Methods. Boston, MA: Birkhäuser Boston, 2000. http://dx.doi.org/10.1007/978-1-4612-1318-5.
Testo completoAsmussen, Søren, e Peter W. Glynn. Stochastic Simulation: Algorithms and Analysis. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-69033-9.
Testo completoStochastic modeling: Analysis and simulation. New York: McGraw-Hill, 1995.
Cerca il testo completoNelson, Barry L. Stochastic modeling: Analysis and simulation. Mineola, N.Y: Dover Publications, 2010.
Cerca il testo completoCapitoli di libri sul tema "Stochastic simulation"
Drew, John H., Diane L. Evans, Andrew G. Glen e Lawrence M. Leemis. "Stochastic Simulation". In International Series in Operations Research & Management Science, 209–40. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-43323-3_12.
Testo completoOlea, Ricardo A. "Stochastic Simulation". In Geostatistics for Engineers and Earth Scientists, 141–62. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-5001-3_9.
Testo completoHeermann, Dieter W. "Stochastic Simulation". In Encyclopedia of Applied and Computational Mathematics, 1402–4. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-540-70529-1_557.
Testo completoBerlinger, Marcel. "Stochastic Simulation". In A Methodology to Model the Statistical Fracture Behavior of Acrylic Glasses for Stochastic Simulation, 93–109. Wiesbaden: Springer Fachmedien Wiesbaden, 2021. http://dx.doi.org/10.1007/978-3-658-34330-9_7.
Testo completoRhinehart, R. Russell, e Robert M. Bethea. "Stochastic Simulation". In Applied Engineering Statistics, 189–204. 2a ed. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003222330-10.
Testo completoRomero, Paulo, e Martins Maciel. "Stochastic Simulation". In Performance, Reliability, and Availability Evaluation of Computational Systems, Volume I, 705–86. Boca Raton: Chapman and Hall/CRC, 2023. http://dx.doi.org/10.1201/9781003306016-14.
Testo completoLantuéjoul, Christian. "Investigating stochastic models". In Geostatistical Simulation, 9–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04808-5_2.
Testo completoGrigoriu, Mircea. "Monte Carlo Simulation". In Stochastic Calculus, 287–342. Boston, MA: Birkhäuser Boston, 2002. http://dx.doi.org/10.1007/978-0-8176-8228-6_5.
Testo completoHaas, Peter J. "Regenerative Simulation". In Stochastic Petri Nets, 189–273. New York, NY: Springer New York, 2002. http://dx.doi.org/10.1007/0-387-21552-2_6.
Testo completoAndò, Bruno, e Salvatore Graziani. "The Nass Simulation Environment". In Stochastic Resonance, 177–86. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4391-6_6.
Testo completoAtti di convegni sul tema "Stochastic simulation"
Apaydin, Mehmet Serkan, Douglas L. Brutlag, Carlos Guestrin, David Hsu e Jean-Claude Latombe. "Stochastic roadmap simulation". In the sixth annual international conference. New York, New York, USA: ACM Press, 2002. http://dx.doi.org/10.1145/565196.565199.
Testo completoGhosh, Soumyadip, e Henry Lam. "Mirror descent stochastic approximation for computing worst-case stochastic input models". In 2015 Winter Simulation Conference (WSC). IEEE, 2015. http://dx.doi.org/10.1109/wsc.2015.7408184.
Testo completoPasserat-Palmbach, Jonathan, Jonathan Caux, Yannick Le Pennec, Romain Reuillon, Ivan Junier, François Kepes e David R. C. Hill. "Parallel stepwise stochastic simulation". In the 2013 ACM SIGSIM conference. New York, New York, USA: ACM Press, 2013. http://dx.doi.org/10.1145/2486092.2486114.
Testo completoDinh, Cong Que, Seiji Nagahara, Gousuke Shiraishi, Yukie Minekawa, Yuya Kamei, Michael Carcasi, Hiroyuki Ide et al. "Calibrated PSCAR stochastic simulation". In Extreme Ultraviolet (EUV) Lithography X, a cura di Kenneth A. Goldberg. SPIE, 2019. http://dx.doi.org/10.1117/12.2515183.
Testo completoBalbo, G., e G. Chiola. "Stochastic petri net simulation". In the 21st conference. New York, New York, USA: ACM Press, 1989. http://dx.doi.org/10.1145/76738.76772.
Testo completoPlumlee, Matthew, e Henry Lam. "Learning stochastic model discrepancy". In 2016 Winter Simulation Conference (WSC). IEEE, 2016. http://dx.doi.org/10.1109/wsc.2016.7822108.
Testo completoShanbhag, Uday V., e Jose H. Blanchet. "Budget-constrained stochastic approximation". In 2015 Winter Simulation Conference (WSC). IEEE, 2015. http://dx.doi.org/10.1109/wsc.2015.7408179.
Testo completoDain, Oliver, Matthew Ginsberg, Erin Keenan, John Pyle, Tristan Smith, Andrew Stoneman e Iain Pardoe. "Stochastic Shipyard Simulation with Simyard". In 2006 Winter Simulation Conference. IEEE, 2006. http://dx.doi.org/10.1109/wsc.2006.322954.
Testo completoYousefian, Farzad, Angelia Nedic e Uday V. Shanbhag. "A smoothing stochastic quasi-newton method for non-lipschitzian stochastic optimization problems". In 2017 Winter Simulation Conference (WSC). IEEE, 2017. http://dx.doi.org/10.1109/wsc.2017.8247960.
Testo completoAnkenman, Bruce, Barry L. Nelson e Jeremy Staum. "Stochastic kriging for simulation metamodeling". In 2008 Winter Simulation Conference (WSC). IEEE, 2008. http://dx.doi.org/10.1109/wsc.2008.4736089.
Testo completoRapporti di organizzazioni sul tema "Stochastic simulation"
Siebke, Christian, Maximilian Bäumler, Madlen Ringhand, Marcus Mai, Felix Elrod e Günther Prokop. Report on design of modules for the stochastic traffic simulation. Technische Universität Dresden, 2021. http://dx.doi.org/10.26128/2021.245.
Testo completoBäumler, Maximilian, Madlen Ringhand, Christian Siebke, Marcus Mai, Felix Elrod e Günther Prokop. Report on validation of the stochastic traffic simulation (Part B). Technische Universität Dresden, 2021. http://dx.doi.org/10.26128/2021.243.
Testo completoJames Glimm e Xiaolin Li. Multiscale Stochastic Simulation and Modeling. Office of Scientific and Technical Information (OSTI), gennaio 2006. http://dx.doi.org/10.2172/862194.
Testo completoField, Richard V. ,. Jr. Stochastic models: theory and simulation. Office of Scientific and Technical Information (OSTI), marzo 2008. http://dx.doi.org/10.2172/932886.
Testo completoRinghand, Madlen, Maximilian Bäumler, Christian Siebke, Marcus Mai e Felix Elrod. Report on validation of the stochastic traffic simulation (Part A). Technische Universität Dresden, 2021. http://dx.doi.org/10.26128/2021.242.
Testo completoSiebke, Christian, Maximilian Bäumler, Madlen Ringhand, Marcus Mai, Felix Elrod e Günther Prokop. Report on integration of the stochastic traffic simulation. Technische Universität Dresden, 2021. http://dx.doi.org/10.26128/2021.246.
Testo completoGlynn, Peter W. Optimization of Stochastic Systems via Simulation. Fort Belvoir, VA: Defense Technical Information Center, agosto 1989. http://dx.doi.org/10.21236/ada214011.
Testo completoJohnson, Ralph. Stochastic Simulation Analysis - 2005 (SSA-05). Fort Belvoir, VA: Defense Technical Information Center, luglio 1997. http://dx.doi.org/10.21236/ada329429.
Testo completoFricks, John, e Gustavo Didier. Statistical Inference and Stochastic Simulation for Microrheology. Fort Belvoir, VA: Defense Technical Information Center, dicembre 2013. http://dx.doi.org/10.21236/ada605473.
Testo completoHeinisch, H. L. Stochastic annealing simulation of cascades in metals. Office of Scientific and Technical Information (OSTI), aprile 1996. http://dx.doi.org/10.2172/270462.
Testo completo