Letteratura scientifica selezionata sul tema "Stochastic Newton algorithms"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Stochastic Newton algorithms".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Stochastic Newton algorithms"
Kovacevic, Ivana, Branko Kovacevic e Zeljko Djurovic. "On strong consistency of a class of recursive stochastic Newton-Raphson type algorithms with application to robust linear dynamic system identification". Facta universitatis - series: Electronics and Energetics 21, n. 1 (2008): 1–21. http://dx.doi.org/10.2298/fuee0801001k.
Testo completoYousefi, Mahsa, e Ángeles Martínez. "Deep Neural Networks Training by Stochastic Quasi-Newton Trust-Region Methods". Algorithms 16, n. 10 (20 ottobre 2023): 490. http://dx.doi.org/10.3390/a16100490.
Testo completoForneron, Jean-Jacques, e Serena Ng. "Estimation and Inference by Stochastic Optimization: Three Examples". AEA Papers and Proceedings 111 (1 maggio 2021): 626–30. http://dx.doi.org/10.1257/pandp.20211038.
Testo completoCao, Pengfei, e Xionglin Luo. "Performance analysis of multi-innovation stochastic Newton recursive algorithms". Digital Signal Processing 56 (settembre 2016): 15–23. http://dx.doi.org/10.1016/j.dsp.2016.05.005.
Testo completoGhoshdastidar, Debarghya, Ambedkar Dukkipati e Shalabh Bhatnagar. "Newton-based stochastic optimization using q-Gaussian smoothed functional algorithms". Automatica 50, n. 10 (ottobre 2014): 2606–14. http://dx.doi.org/10.1016/j.automatica.2014.08.021.
Testo completoShao, Wei, e Guangbao Guo. "Multiple-Try Simulated Annealing Algorithm for Global Optimization". Mathematical Problems in Engineering 2018 (17 luglio 2018): 1–11. http://dx.doi.org/10.1155/2018/9248318.
Testo completoGao, Guohua, Gaoming Li e Albert Coburn Reynolds. "A Stochastic Optimization Algorithm for Automatic History Matching". SPE Journal 12, n. 02 (1 giugno 2007): 196–208. http://dx.doi.org/10.2118/90065-pa.
Testo completoWang, Qing, e Yang Cao. "Stochastic Finite Element Method for Nonlinear Dynamic Problem with Random Parameters". Advanced Materials Research 189-193 (febbraio 2011): 1348–57. http://dx.doi.org/10.4028/www.scientific.net/amr.189-193.1348.
Testo completoWang, Yanshan, In-Chan Choi e Hongfang Liu. "Generalized ensemble model for document ranking in information retrieval". Computer Science and Information Systems 14, n. 1 (2017): 123–51. http://dx.doi.org/10.2298/csis160229042w.
Testo completoClayton, R. P., e R. F. Martinez-Botas. "Application of generic algorithms in aerodynamic optimisation design procedures". Aeronautical Journal 108, n. 1090 (dicembre 2004): 611–20. http://dx.doi.org/10.1017/s0001924000000440.
Testo completoTesi sul tema "Stochastic Newton algorithms"
Lu, Wei. "Μéthοdes stοchastiques du secοnd οrdre pοur le traitement séquentiel de dοnnées massives". Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMIR13.
Testo completoWith the rapid development of technologies and the acquisition of big data, methods capable of processing data sequentially (online) have become indispensable. Among these methods, stochastic gradient algorithms have been established for estimating the minimizer of a function expressed as the expectation of a random function. Although they have become essential, these algorithms encounter difficulties when the problem is ill-conditioned. In this thesis, we focus on second-order stochastic algorithms, such as those of the Newton type, and their applications to various statistical and optimization problems. After establishing theoretical foundations and exposing the motivations that lead us to explore stochastic Newton algorithms, we develop the various contributions of this thesis. The first contribution concerns the study and development of stochastic Newton algorithms for ridge linear regression and ridge logistic regression. These algorithms are based on the Riccati formula (Sherman-Morrison) to recursively estimate the inverse of the Hessian. As the acquisition of big data is generally accompanied by a contamination of the latter, in a second contribution, we focus on the online estimation of the geometric median, which is a robust indicator, i.e., not very sensitive to the presence of atypical data. More specifically, we propose a new stochastic Newton estimator to estimate the geometric median. In the first two contributions, the estimators of the Hessians' inverses are constructed using the Riccati formula, but this is only possible for certain functions. Thus, our third contribution introduces a new Robbins-Monro type method for online estimation of the Hessian's inverse, allowing us then to develop universal stochastic Newton algorithms. Finally, our last contribution focuses on Full Adagrad type algorithms, where the difficulty lies in the fact that there is an adaptive step based on the square root of the inverse of the gradient's covariance. We thus propose a Robbins-Monro type algorithm to estimate this matrix, allowing us to propose a recursive approach for Full AdaGrad and its streaming version, with reduced computational costs. For all the new estimators we propose, we establish their convergence rates as well as their asymptotic efficiency. Moreover, we illustrate the efficiency of these algorithms using numerical simulations and by applying them to real data
Stewart, Alistair Mark. "Efficient algorithms for infinite-state recursive stochastic models and Newton's method". Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/10001.
Testo completoLakshmanan, K. "Online Learning and Simulation Based Algorithms for Stochastic Optimization". Thesis, 2012. http://etd.iisc.ac.in/handle/2005/3245.
Testo completoLakshmanan, K. "Online Learning and Simulation Based Algorithms for Stochastic Optimization". Thesis, 2012. http://hdl.handle.net/2005/3245.
Testo completoMondal, Akash. "Stochastic Optimization And Its Application In Reinforcement Learning". Thesis, 2022. https://etd.iisc.ac.in/handle/2005/6086.
Testo completoGupta, Saurabh. "Development Of Deterministic And Stochastic Algorithms For Inverse Problems Of Optical Tomography". Thesis, 2013. https://etd.iisc.ac.in/handle/2005/2608.
Testo completoGupta, Saurabh. "Development Of Deterministic And Stochastic Algorithms For Inverse Problems Of Optical Tomography". Thesis, 2013. http://etd.iisc.ernet.in/handle/2005/2608.
Testo completoMartin, James Robert Ph D. "A computational framework for the solution of infinite-dimensional Bayesian statistical inverse problems with application to global seismic inversion". Thesis, 2015. http://hdl.handle.net/2152/31374.
Testo completoCapitoli di libri sul tema "Stochastic Newton algorithms"
Bhatnagar, S., H. Prasad e L. Prashanth. "Newton-Based Smoothed Functional Algorithms". In Stochastic Recursive Algorithms for Optimization, 133–48. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-4285-0_8.
Testo completoBhatnagar, S., H. Prasad e L. Prashanth. "Newton-Based Simultaneous Perturbation Stochastic Approximation". In Stochastic Recursive Algorithms for Optimization, 105–31. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-4285-0_7.
Testo completoHe, Sailing, Staffan Strom e Vaughan H. Weston. "Wave-Splittings Combined With Optimization Techniques". In Time Domain Wave-Splittings and Inverse Problems, 185–228. Oxford University PressOxford, 1998. http://dx.doi.org/10.1093/oso/9780198565499.003.0005.
Testo completoArsham, Hossein, e Shaya Sheikh. "Organizational Performance-Design Process". In Advances in Business Information Systems and Analytics, 54–84. IGI Global, 2015. http://dx.doi.org/10.4018/978-1-4666-7272-7.ch005.
Testo completoJabari, Farkhondeh, Heresh Seyedia, Sajad Najafi Ravadanegh e Behnam Mohammadi Ivatloo. "Stochastic Contingency Analysis Based on Voltage Stability Assessment in Islanded Power System Considering Load Uncertainty Using MCS and k-PEM". In Advances in Computer and Electrical Engineering, 12–36. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-4666-9911-3.ch002.
Testo completoAtti di convegni sul tema "Stochastic Newton algorithms"
Graillat, Stef, Fabienne Jezequel, Enzo Queiros Martins e Maxime Spyropoulos. "Computing multiple roots of polynomials in stochastic arithmetic with Newton method and approximate GCD". In 2021 23rd International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC). IEEE, 2021. http://dx.doi.org/10.1109/synasc54541.2021.00020.
Testo completoArun, C. O., B. N. Rao e S. M. Sivakumar. "Stochastic Damage Growth Analysis Using EFGM". In ASME 2008 Pressure Vessels and Piping Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/pvp2008-61882.
Testo completoZhang, Shumao, Fahim Forouzanfar e Xiao-Hui Wu. "Stein Variational Gradient Descent for Reservoir History Matching Problems". In SPE Reservoir Simulation Conference. SPE, 2023. http://dx.doi.org/10.2118/212190-ms.
Testo completoEltahan, Esmail, Faruk Omer Alpak e Kamy Sepehrnoori. "A Quasi-Newton Method for Well Location Optimization Under Uncertainty". In SPE Reservoir Simulation Conference. SPE, 2023. http://dx.doi.org/10.2118/212212-ms.
Testo completoFang, X., e J. Tang. "Granular Damping Analysis Using a Direct Simulation Monte Carlo Approach". In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-14448.
Testo completo