Letteratura scientifica selezionata sul tema "Stochastic neural networks"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Stochastic neural networks".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Stochastic neural networks"
Reddy, BhanuTeja, e Usha J.C. "Prediction of Stock Market using Stochastic Neural Networks". International Journal of Innovative Research in Computer Science & Technology 7, n. 5 (settembre 2019): 128–38. http://dx.doi.org/10.21276/ijircst.2019.7.5.1.
Testo completoWong, Eugene. "Stochastic neural networks". Algorithmica 6, n. 1-6 (giugno 1991): 466–78. http://dx.doi.org/10.1007/bf01759054.
Testo completoZhou, Wuneng, Xueqing Yang, Jun Yang e Jun Zhou. "Stochastic Synchronization of Neutral-Type Neural Networks with Multidelays Based onM-Matrix". Discrete Dynamics in Nature and Society 2015 (2015): 1–8. http://dx.doi.org/10.1155/2015/826810.
Testo completoHu, Shigeng, Xiaoxin Liao e Xuerong Mao. "Stochastic Hopfield neural networks". Journal of Physics A: Mathematical and General 36, n. 9 (19 febbraio 2003): 2235–49. http://dx.doi.org/10.1088/0305-4470/36/9/303.
Testo completoGao, Zhan, Elvin Isufi e Alejandro Ribeiro. "Stochastic Graph Neural Networks". IEEE Transactions on Signal Processing 69 (2021): 4428–43. http://dx.doi.org/10.1109/tsp.2021.3092336.
Testo completoSAKTHIVEL, RATHINASAMY, R. SAMIDURAI e S. MARSHAL ANTHONI. "EXPONENTIAL STABILITY FOR STOCHASTIC NEURAL NETWORKS OF NEUTRAL TYPE WITH IMPULSIVE EFFECTS". Modern Physics Letters B 24, n. 11 (10 maggio 2010): 1099–110. http://dx.doi.org/10.1142/s0217984910023141.
Testo completoWu, Chunmei, Junhao Hu e Yan Li. "Robustness Analysis of Hybrid Stochastic Neural Networks with Neutral Terms and Time-Varying Delays". Discrete Dynamics in Nature and Society 2015 (2015): 1–12. http://dx.doi.org/10.1155/2015/278571.
Testo completoKanarachos, Andreas E., e Kleanthis T. Geramanis. "Semi-Stochastic Complex Neural Networks". IFAC Proceedings Volumes 31, n. 12 (giugno 1998): 47–52. http://dx.doi.org/10.1016/s1474-6670(17)36040-8.
Testo completoPeretto, Pierre, e Jean-jacques Niez. "Stochastic Dynamics of Neural Networks". IEEE Transactions on Systems, Man, and Cybernetics 16, n. 1 (gennaio 1986): 73–83. http://dx.doi.org/10.1109/tsmc.1986.289283.
Testo completoHurtado, Jorge E. "Neural networks in stochastic mechanics". Archives of Computational Methods in Engineering 8, n. 3 (settembre 2001): 303–42. http://dx.doi.org/10.1007/bf02736646.
Testo completoTesi sul tema "Stochastic neural networks"
Pensuwon, Wanida. "Stochastic dynamic hierarchical neural networks". Thesis, University of Hertfordshire, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.366030.
Testo completoCAMPOS, LUCIANA CONCEICAO DIAS. "PERIODIC STOCHASTIC MODEL BASED ON NEURAL NETWORKS". PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2010. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=17076@1.
Testo completoProcesso Estocástico é um ramo da teoria da probabilidade onde se define um conjunto de modelos que permitem o estudo de problemas com componentes aleatórias. Muitos problemas reais apresentam características complexas, tais como não-linearidade e comportamento caótico, que necessitam de modelos capazes de capturar as reais características do problema para obter um tratamento apropriado. Porém, os modelos existentes ou são lineares, cuja aplicabilidade a esses problemas pode ser inadequada, ou necessitam de uma formulação complexa, onde a aplicabilidade é limitada e específica ao problema, ou dependem de suposições a priori sobre o comportamento do problema para poderem ser aplicados. Isso motivou a elaboração de um novo modelo de processo estocástico genérico, intrinsecamente não-linear, que possa ser aplicado em uma gama de problemas de fenômenos não-lineares, de comportamento altamente estocástico, e até mesmo com características periódicas. Como as redes neurais artificiais são modelos paramétricos não-lineares, simples de entendimento e implementação, capazes de capturar comportamentos de variados tipos de problemas, decidiu-se então utilizá-las como base do novo modelo proposto nessa tese, que é denominado Processo Estocástico Neural. A não-linearidade, obtida através das redes neurais desse processo estocástico, permite que se capture adequadamente o comportamento da série histórica de problemas de fenômenos não-lineares, com características altamente estocásticas e até mesmo periódicas. O objetivo é usar esse modelo para gerar séries temporais sintéticas, igualmente prováveis à série histórica, na solução desses tipos de problemas, como por exemplo os problemas que envolvem fenômenos climatológicos, econômicos, entre outros. Escolheu-se, como estudo de caso dessa tese, aplicar o modelo proposto no tratamento de afluências mensais sob o contexto do planejamento da operação do sistema hidrotérmico brasileiro. Os resultados mostraram que o Processo Estocástico Neural consegue gerar séries sintéticas com características similares às séries históricas de afluências mensais.
Stochastic Process is a branch of probability theory which defines a set of templates that allow the study of problems with random components. Many real problems exhibit complex characteristics such as nonlinearity and chaotic behavior, which require models capable of capture the real characteristics of the problem for a appropriate treatment. However, existing models have limited application to certain problems or because they are linear models (whose application gets results inconsistent or inadequate) or because they require a complex formulation or depend on a priori assumptions about the behavior of the problem, which requires a knowledge the problem at a level of detail that there is not always available. This motivated the development of a model stochastic process based on neural networks, so that is generic to be applied in a range of problems involving highly stochastic phenomena of behavior and also can be applied to phenomena that have periodic characteristics. As artificial neural networks are non-linear models, simple to understand and implementation, able to capture behaviors of varied types problems, then decided to use them as the basis of new model proposed in this thesis, which is an intrinsically non-linear model, called the Neural Stochastic Process. Through neural networks that stochastic process, can adequately capture the behavior problems of the series of phenomena with features highly stochastic and / or periodical. The goal is to use this model to generate synthetic time series, equally likely to historical series, in solution of various problems, eg problems phenomena involving climatology, economic, among others. It was chosen as a case study of this thesis, applying the model proposed in the treatment of monthly inflows in the context of operation planning of the Brazilian hydrothermal system. The Results showed that the process can Stochastic Neural generate synthetic series of similar characteristics to the historical monthly inflow series.
Sutherland, Connie. "Spatio-temporal feedback in stochastic neural networks". Thesis, University of Ottawa (Canada), 2007. http://hdl.handle.net/10393/27559.
Testo completoLing, Hong. "Implementation of Stochastic Neural Networks for Approximating Random Processes". Master's thesis, Lincoln University. Environment, Society and Design Division, 2007. http://theses.lincoln.ac.nz/public/adt-NZLIU20080108.124352/.
Testo completoZhao, Jieyu. "Stochastic bit stream neural networks : theory, simulations and applications". Thesis, Royal Holloway, University of London, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.338916.
Testo completoHyland, P. "On the implementation of neural networks using stochastic arithmetic". Thesis, Bangor University, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.306224.
Testo completoTodeschi, Tiziano. "Calibration of local-stochastic volatility models with neural networks". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/23052/.
Testo completo陳穎志 e Wing-chi Chan. "Modelling of nonlinear stochastic systems using neural and neurofuzzy networks". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2001. http://hub.hku.hk/bib/B31241475.
Testo completoChan, Wing-chi. "Modelling of nonlinear stochastic systems using neural and neurofuzzy networks /". Hong Kong : University of Hong Kong, 2001. http://sunzi.lib.hku.hk/hkuto/record.jsp?B22925843.
Testo completoRising, Barry John Paul. "Hardware architectures for stochastic bit-stream neural networks : design and implementation". Thesis, Royal Holloway, University of London, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.326219.
Testo completoLibri sul tema "Stochastic neural networks"
Zhou, Wuneng, Jun Yang, Liuwei Zhou e Dongbing Tong. Stability and Synchronization Control of Stochastic Neural Networks. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-47833-2.
Testo completoInternational Conference on Applied Stochastic Models and Data Analysis (12th : 2007 : Chania, Greece), a cura di. Advances in data analysis: Theory and applications to reliability and inference, data mining, bioinformatics, lifetime data, and neural networks. Boston: Birkhäuser, 2010.
Cerca il testo completoZhu, Q. M. Fast orthogonal identification of nonlinear stochastic models and radial basis function neural networks. Sheffield: University of Sheffield, Dept. of Automatic Control and Systems Engineering, 1994.
Cerca il testo completoThathachar, Mandayam A. L. Networks of learning automata: Techniques for online stochastic optimization. Boston, MA: Kluwer Academic, 2003.
Cerca il testo completoS, Sastry P., a cura di. Networks of learning automata: Techniques for online stochastic optimization. Boston: Kluwer Academic, 2004.
Cerca il testo completoFocus, Symposium on Learning and Adaptation in Stochastic and Statistical Systems (2001 Baden-Baden Germany). Proceedings of the Focus Symposium on Learning and Adaptation in Stochastic and Statistical Systems. Windsor, Ont: International Institute for Advanced Studies in Systems Research and Cybernetics, 2002.
Cerca il testo completoCurram, Stephen. representing intelligent decision making in discrete event simulation: a stochastic neural network approach. [s.l.]: typescript, 1997.
Cerca il testo completoFalmagne, Jean-Claude, David Eppstein, Christopher Doble, Dietrich Albert e Xiangen Hu. Knowledge spaces: Applications in education. Heidelberg: Springer, 2013.
Cerca il testo completoFalmagne, Jean-Claude. Knowledge Spaces: Applications in Education. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Cerca il testo completoHangartner, Ricky Dale. Probabilistic computation in stochastic pulse neuromime networks. 1994.
Cerca il testo completoCapitoli di libri sul tema "Stochastic neural networks"
Rojas, Raúl. "Stochastic Networks". In Neural Networks, 371–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-61068-4_14.
Testo completoMüller, Berndt, e Joachim Reinhardt. "Stochastic Neurons". In Neural Networks, 37–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-97239-3_4.
Testo completoMüller, Berndt, Joachim Reinhardt e Michael T. Strickland. "Stochastic Neurons". In Neural Networks, 38–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-57760-4_4.
Testo completoHänggi, Martin, e George S. Moschytz. "Stochastic Optimization". In Cellular Neural Networks, 101–25. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4757-3220-7_6.
Testo completoRennolls, Keith, Alan Soper, Phil Robbins e Ray Guthrie. "Stochastic Neural Networks". In ICANN ’93, 481. London: Springer London, 1993. http://dx.doi.org/10.1007/978-1-4471-2063-6_122.
Testo completoZhang, Yumin, Lei Guo, Lingyao Wu e Chunbo Feng. "On Stochastic Neutral Neural Networks". In Advances in Neural Networks — ISNN 2005, 69–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11427391_10.
Testo completoSiegelmann, Hava T. "Stochastic Dynamics". In Neural Networks and Analog Computation, 121–39. Boston, MA: Birkhäuser Boston, 1999. http://dx.doi.org/10.1007/978-1-4612-0707-8_9.
Testo completoGolea, Mostefa, Masahiro Matsuoka e Yasubumi Sakakibara. "Stochastic simple recurrent neural networks". In Grammatical Interference: Learning Syntax from Sentences, 262–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/bfb0033360.
Testo completoHidalgo, Jorge, Luís F. Seoane, Jesús M. Cortés e Miguel A. Muñoz. "Stochastic Amplification in Neural Networks". In Trends in Mathematics, 45–49. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08138-0_9.
Testo completoHerve, Thierry, Olivier Francois e Jacques Demongeot. "Markovian spatial properties of a random field describing a stochastic neural network: Sequential or parallel implementation?" In Neural Networks, 81–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/3-540-52255-7_29.
Testo completoAtti di convegni sul tema "Stochastic neural networks"
Gao, Zhan, Elvin Isufi e Alejandro Ribeiro. "Stochastic Graph Neural Networks". In ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020. http://dx.doi.org/10.1109/icassp40776.2020.9054424.
Testo completoZhao, J. "Stochastic connection neural networks". In 4th International Conference on Artificial Neural Networks. IEE, 1995. http://dx.doi.org/10.1049/cp:19950525.
Testo completoChien, Jen-Tzung, e Yu-Min Huang. "Stochastic Convolutional Recurrent Networks". In 2020 International Joint Conference on Neural Networks (IJCNN). IEEE, 2020. http://dx.doi.org/10.1109/ijcnn48605.2020.9206970.
Testo completoGalan-Prado, Fabio, Alejandro Moran, Joan Font, Miquel Roca e Josep L. Rossello. "Stochastic Radial Basis Neural Networks". In 2019 29th International Symposium on Power and Timing Modeling, Optimization and Simulation (PATMOS). IEEE, 2019. http://dx.doi.org/10.1109/patmos.2019.8862129.
Testo completoRamakrishnan, Swathika, e Dhireesha Kudithipudi. "On accelerating stochastic neural networks". In NANOCOM '17: ACM The Fourth Annual International Conference on Nanoscale Computing and Communication. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3109453.3123959.
Testo completoWeller, Dennis D., Nathaniel Bleier, Michael Hefenbrock, Jasmin Aghassi-Hagmann, Michael Beigl, Rakesh Kumar e Mehdi B. Tahoori. "Printed Stochastic Computing Neural Networks". In 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2021. http://dx.doi.org/10.23919/date51398.2021.9474254.
Testo completoGulshad, Sadaf, Dick Sigmund e Jong-Hwan Kim. "Learning to reproduce stochastic time series using stochastic LSTM". In 2017 International Joint Conference on Neural Networks (IJCNN). IEEE, 2017. http://dx.doi.org/10.1109/ijcnn.2017.7965942.
Testo completoNikolic, Konstantin P., e Ivan B. Scepanovic. "Stochastic search-based neural networks learning algorithms". In 2008 9th Symposium on Neural Network Applications in Electrical Engineering. IEEE, 2008. http://dx.doi.org/10.1109/neurel.2008.4685579.
Testo completoJuuti, Mika, Francesco Corona e Juha Karhunen. "Stochastic Discriminant Analysis". In 2015 International Joint Conference on Neural Networks (IJCNN). IEEE, 2015. http://dx.doi.org/10.1109/ijcnn.2015.7280609.
Testo completoKosko, B. "Stochastic competitive learning". In 1990 IJCNN International Joint Conference on Neural Networks. IEEE, 1990. http://dx.doi.org/10.1109/ijcnn.1990.137718.
Testo completoRapporti di organizzazioni sul tema "Stochastic neural networks"
Burton, Robert M., e Jr. Topics in Stochastics, Symbolic Dynamics and Neural Networks. Fort Belvoir, VA: Defense Technical Information Center, dicembre 1996. http://dx.doi.org/10.21236/ada336426.
Testo completo