Segui questo link per vedere altri tipi di pubblicazioni sul tema: Stochastic Fokker-Planck.

Libri sul tema "Stochastic Fokker-Planck"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Vedi i top-26 libri per l'attività di ricerca sul tema "Stochastic Fokker-Planck".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Vedi i libri di molte aree scientifiche e compila una bibliografia corretta.

1

Frank, T. D. Nonlinear Fokker-Planck equations: Fundamentals and applications. Berlin: Springer, 2004.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Grasman, Johan. Asymptotic methods for the Fokker-Planck equation and the exit problem in applications. Berlin: Springer, 1999.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Chirikjian, Gregory S. Stochastic models, information theory, and lie groups. Boston: Birkhäuser, 2009.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Fokker-Planck-Kolmogorov equations. Providence, Rhode Island: American Mathematical Society, 2015.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Krylov, Nicolai V., Michael Rockner, Vladimir I. Bogachev e Stanislav V. Shaposhnikov. Fokker-Planck-Kolmogorov Equations. American Mathematical Society, 2015.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Nonlinear Fokker-Planck equations: Fundamentals and applications. Berlin: Springer, 2005.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Pavliotis, Grigorios A. Stochastic Processes and Applications: Diffusion Processes, the Fokker-Planck and Langevin Equations. Springer, 2014.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Pavliotis, Grigorios A. Stochastic Processes and Applications: Diffusion Processes, the Fokker-Planck and Langevin Equations. Springer, 2016.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Pavliotis, Grigorios A. Stochastic Processes and Applications: Diffusion Processes, the Fokker-Planck and Langevin Equations. Springer London, Limited, 2014.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

McClintock, P. V. E., e Frank Moss. Noise in Nonlinear Dynamical Systems Vol. 1: Theory of Continuous Fokker-Planck Systems. Cambridge University Press, 2007.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
11

McClintock, P. V. E., e Frank Moss. Noise in Nonlinear Dynamical Systems: Volume 1, Theory of Continuous Fokker-Planck Systems. Cambridge University Press, 2012.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
12

(Editor), Peter H. Baxendale, e Sergey V. Lototsky (Editor), a cura di. Stochastic Differential Equations: Theory and Applications, a Volume in Honor of Professor Boris L Rozovskii (Interdisciplinary Mathematical Sciences) (Interdisciplinary Mathematical Sciences). World Scientific Publishing Company, 2007.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
13

Fokker-Planck Equation for Stochastic Dynamical Systems and Its Explicit Steady State Solutions. World Scientific Publishing Co Pte Ltd, 1994.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
14

Fokker-Planck Equation for Stochastic Dynamical Systems and Its Explicit Steady State Solutions. World Scientific Publishing Co Pte Ltd, 1994.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
15

The Fokker-Planck equation for stochastic dynamical systems and its explicit steady state solutions. Singapore: World Scientific, 1994.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
16

Succi, Sauro. Stochastic Particle Dynamics. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199592357.003.0009.

Testo completo
Abstract (sommario):
Dense fluids and liquids molecules are in constant interaction; hence, they do not fit into the Boltzmann’s picture of a clearcut separation between free-streaming and collisional interactions. Since the interactions are soft and do not involve large scattering angles, an effective way of describing dense fluids is to formulate stochastic models of particle motion, as pioneered by Einstein’s theory of Brownian motion and later extended by Paul Langevin. Besides its practical value for the study of the kinetic theory of dense fluids, Brownian motion bears a central place in the historical development of kinetic theory. Among others, it provided conclusive evidence in favor of the atomistic theory of matter. This chapter introduces the basic notions of stochastic dynamics and its connection with other important kinetic equations, primarily the Fokker–Planck equation, which bear a complementary role to the Boltzmann equation in the kinetic theory of dense fluids.
Gli stili APA, Harvard, Vancouver, ISO e altri
17

Introduction to Stochastic Analysis and Malliavin Calculus. Edizioni della Normale, 2014.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
18

Introduction to stochastic analysis and Malliavin calculus. Pisa, Italy: Edizioni della Normale, 2007.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
19

Prato, Giuseppe Da. Introduction to Stochastic Analysis and Malliavin Calculus. Scuola Normale Superiore, 2014.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
20

Prato, Giuseppe Da, e Ville Turunen. Introduction to Stochastic Analysis and Malliavin Calculus. Scuola Normale Superiore, 2009.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
21

Modeling with Itô Stochastic Differential Equations. Springer, 2007.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
22

Modeling with Itô Stochastic Differential Equations. Springer London, Limited, 2007.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
23

Allen, E. Modeling with Itô Stochastic Differential Equations: Theory and Applications). E Allen, 2010.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
24

Henriksen, Niels Engholm, e Flemming Yssing Hansen. Introduction to Condensed-Phase Dynamics. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198805014.003.0009.

Testo completo
Abstract (sommario):
This chapter discusses chemical reactions in solution; first, how solvents modify the potential energy surface of the reacting molecules and second, the role of diffusion. As a first approximation, solvent effects are described by models where the solvent is represented by a dielectric continuum, focusing on the Onsager reaction-field model for solvation of polar molecules. The reactants of bimolecular reactions are brought into contact by diffusion, and the interplay between diffusion and chemical reaction that determines the overall reaction rate is described. The solution to Fick’s second law of diffusion, including a term describing bimolecular reaction, is discussed. The limits of diffusion control and activation control, respectively, are identified. It concludes with a stochastic description of diffusion and chemical reaction based on the Fokker–Planck equation, which includes the diffusion of particles interacting via a potential U(r).
Gli stili APA, Harvard, Vancouver, ISO e altri
25

Brezin, Edouard, e Sinobu Hikami. Beta ensembles. A cura di Gernot Akemann, Jinho Baik e Philippe Di Francesco. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780198744191.013.20.

Testo completo
Abstract (sommario):
This article deals with beta ensembles. Classical random matrix ensembles contain a parameter β, taking on the values 1, 2, and 4. This parameter, which relates to the underlying symmetry, appears as a repulsion sβ between neighbouring eigenvalues for small s. β may be regarded as a continuous positive parameter on the basis of different viewpoints of the eigenvalue probability density function for the classical random matrix ensembles - as the Boltzmann factor for a log-gas or the squared ground state wave function of a quantum many-body system. The article first considers log-gas systems before discussing the Fokker-Planck equation and the Calogero-Sutherland system. It then describes the random matrix realization of the β-generalization of the circular ensemble and concludes with an analysis of stochastic differential equations resulting from the case of the bulk scaling limit of the β-generalization of the Gaussian ensemble.
Gli stili APA, Harvard, Vancouver, ISO e altri
26

Stochastic Models, Information Theory, and Lie Groups, Volume 1 Vol. 1: Classical Results and Geometric Methods. Birkhauser Verlag, 2009.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!

Vai alla bibliografia