Letteratura scientifica selezionata sul tema "Steerable Convolutions"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Steerable Convolutions".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Steerable Convolutions"
Diaz, Ivan, Mario Geiger e Richard Iain McKinley. "Leveraging SO(3)-steerable convolutions for pose-robust semantic segmentation in 3D medical data". Machine Learning for Biomedical Imaging 2, May 2024 (15 maggio 2024): 834–55. http://dx.doi.org/10.59275/j.melba.2024-7189.
Testo completoMarshall, Nicholas F., Oscar Mickelin e Amit Singer. "Fast Expansion into Harmonics on the Disk: A Steerable Basis with Fast Radial Convolutions". SIAM Journal on Scientific Computing 45, n. 5 (22 settembre 2023): A2431—A2457. http://dx.doi.org/10.1137/22m1542775.
Testo completoZhu, B., J. Zhang, T. Tang e Y. Ye. "SFOC: A NOVEL MULTI-DIRECTIONAL AND MULTI-SCALE STRUCTURAL DESCRIPTOR FOR MULTIMODAL REMOTE SENSING IMAGE MATCHING". International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIII-B2-2022 (30 maggio 2022): 113–20. http://dx.doi.org/10.5194/isprs-archives-xliii-b2-2022-113-2022.
Testo completoZhong, Jiaxin, Haishan Zou, Jing Lu e Dong Zhang. "A modified convolution model for calculating the far field directivity of a parametric array loudspeaker". Journal of the Acoustical Society of America 153, n. 3 (marzo 2023): 1439–51. http://dx.doi.org/10.1121/10.0017361.
Testo completoHitzer, Eckhard. "General Steerable Two-sided Clifford Fourier Transform, Convolution and Mustard Convolution". Advances in Applied Clifford Algebras 27, n. 3 (9 giugno 2016): 2215–34. http://dx.doi.org/10.1007/s00006-016-0687-5.
Testo completoHitzer, Eckhard. "Quaternionic Wiener–Khinchine Theorems and Spectral Representation of Convolution with Steerable Two-sided Quaternion Fourier Transform". Advances in Applied Clifford Algebras 27, n. 2 (2 dicembre 2016): 1313–28. http://dx.doi.org/10.1007/s00006-016-0744-0.
Testo completoJin, Yuzhen, Jiehao Chen e Jingyu Cui. "Fast flow field prediction based on E(2)-equivariant steerable convolutional neural networks". Physics of Fluids 36, n. 9 (1 settembre 2024). http://dx.doi.org/10.1063/5.0219221.
Testo completoVidacic, Dragan, e Richard A. Messner. "BIOLOGICALLY INSPIRED FILTERS UTILIZING SPECTRAL PROPERTIES OF TOEPLITZ-BLOCK-TOEPLITZ MATRICES". International Journal of Computing, 28 dicembre 2015, 198–207. http://dx.doi.org/10.47839/ijc.14.4.820.
Testo completoTesi sul tema "Steerable Convolutions"
Joginipelly, Arjun. "Implementation of Separable & Steerable Gaussian Smoothers on an FPGA". ScholarWorks@UNO, 2010. http://scholarworks.uno.edu/td/98.
Testo completoPezzicoli, Francesco. "Statistical Physics - Machine Learning Interplay : from Addressing Class Imbalance with Replica Theory to Predicting Dynamical Heterogeneities with SE(3)-equivariant Graph Neural Networks". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASG115.
Testo completoThis thesis explores the relationship between Machine Learning (ML) and Statistical Physics (SP), addressing two significant challenges at the interface between the two fields. First, I examine the problem of Class Imbalance (CI) in the supervised learning set-up by introducing an analytically tractable model grounded in statistical mechanics: I provide a theoretical framework to analyze and interpret CI. Some non-trivial phenomena are observed: for example, a balanced training set often results in sub-optimal performance. Second, I study the phenomenon of dynamical arrest in supercooled liquids through advanced ML models. Leveraging SE(3)-equivariant Graph Neural Networks, I am able to reach or surpass state-of-the art accuracy in the task of prediction of dynamical properties from static structure. This suggests the emergence of a growing "amorphous order" that correlates with particle dynamics. It also emphasizes the importance of directional features in identifying this order. Together, these contributions demonstrate the potential of SP in addressing ML challenges and the utility of ML models in advancing physical sciences
Atti di convegni sul tema "Steerable Convolutions"
Vasukidevi, G., Gulshan Dhasmana, Madhavi Kappagantula, Shalini S, Harshal Patil e Ramya Maranan. "Automatic Scene Text Extraction and Recognition Using Steerable Convolutional Neural Network with Fennec Fox Optimization". In 2024 Second International Conference on Intelligent Cyber Physical Systems and Internet of Things (ICoICI), 1602–8. IEEE, 2024. http://dx.doi.org/10.1109/icoici62503.2024.10696175.
Testo completoAlves Pereira, Luis F., Jan De Beenhouwer e Jan Sijbers. "The Deep Steerable Convolutional Framelet Network for Suppressing Directional Artifacts in X-ray Tomosynthesis". In 2023 31st European Signal Processing Conference (EUSIPCO). IEEE, 2023. http://dx.doi.org/10.23919/eusipco58844.2023.10289781.
Testo completoJanjic, Jovana, Awaz Ali, Frits Mastik, Merel D. Leistikow, Johan G. Bosch, Paul Breedveld, Antonius F. W. Van der Steen e Gijs Van Soest. "Volumetric ultrasound image reconstruction from a single-element forward-looking intracardiac steerable catheter using 3D adaptive normalized convolution". In 2018 IEEE International Ultrasonics Symposium (IUS). IEEE, 2018. http://dx.doi.org/10.1109/ultsym.2018.8580024.
Testo completoRoshanfar, Majid, Pedram Fekri e Javad Dargahi. "A Deep Learning Model for Tip Force Estimation on Steerable Catheters Via Learning-From-Simulation". In THE HAMLYN SYMPOSIUM ON MEDICAL ROBOTICS. The Hamlyn Centre, Imperial College London London, UK, 2023. http://dx.doi.org/10.31256/hsmr2023.17.
Testo completo