Letteratura scientifica selezionata sul tema "Specular light paths"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Specular light paths".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Specular light paths"
Fan, Zhimin, Pengpei Hong, Jie Guo, Changqing Zou, Yanwen Guo e Ling-Qi Yan. "Manifold Path Guiding for Importance Sampling Specular Chains". ACM Transactions on Graphics 42, n. 6 (5 dicembre 2023): 1–14. http://dx.doi.org/10.1145/3618360.
Testo completoGoradia, Rhushabh, M. S. Sriram Kashyap, Parag Chaudhuri e Sharat Chandran. "Tracing specular light paths in point-based scenes". Visual Computer 27, n. 12 (4 novembre 2011): 1083–97. http://dx.doi.org/10.1007/s00371-011-0654-z.
Testo completoSu, Fujia, Bingxuan Li, Qingyang Yin, Yanchen Zhang e Sheng Li. "Proxy Tracing: Unbiased Reciprocal Estimation for Optimized Sampling in BDPT". ACM Transactions on Graphics 43, n. 4 (19 luglio 2024): 1–21. http://dx.doi.org/10.1145/3658216.
Testo completoFan, Zhimin, Jie Guo, Yiming Wang, Tianyu Xiao, Hao Zhang, Chenxi Zhou, Zhenyu Chen, Pengpei Hong, Yanwen Guo e Ling-Qi Yan. "Specular Polynomials". ACM Transactions on Graphics 43, n. 4 (19 luglio 2024): 1–13. http://dx.doi.org/10.1145/3658132.
Testo completoLi, Tianyu, Wenyou Wang, Daqi Lin e Cem Yuksel. "Virtual Blue Noise Lighting". Proceedings of the ACM on Computer Graphics and Interactive Techniques 5, n. 3 (25 luglio 2022): 1–26. http://dx.doi.org/10.1145/3543872.
Testo completoWest, Rex. "Physically-based feature line rendering". ACM Transactions on Graphics 40, n. 6 (dicembre 2021): 1–11. http://dx.doi.org/10.1145/3478513.3480550.
Testo completoYang, Xiaozhou, e Fan Bai. "Three-Dimensional Structure Analysis of Urban Landscape Based on Big Data Technology and Digital Technology". Scientific Programming 2021 (12 novembre 2021): 1–10. http://dx.doi.org/10.1155/2021/7970870.
Testo completoLin, Daqi, Markus Kettunen, Benedikt Bitterli, Jacopo Pantaleoni, Cem Yuksel e Chris Wyman. "Generalized resampled importance sampling". ACM Transactions on Graphics 41, n. 4 (luglio 2022): 1–23. http://dx.doi.org/10.1145/3528223.3530158.
Testo completoYu, Rui, Yue Dong, Youkang Kong e Xin Tong. "Neural Path Sampling for Rendering Pure Specular Light Transport". Computer Graphics Forum, 19 dicembre 2023. http://dx.doi.org/10.1111/cgf.14997.
Testo completoXu, Xiaofeng, Lu Wang e Beibei Wang. "Efficient Caustics Rendering via Spatial and Temporal Path Reuse". Computer Graphics Forum, 31 ottobre 2023. http://dx.doi.org/10.1111/cgf.14975.
Testo completoTesi sul tema "Specular light paths"
Huan, Quentin. "Modélisation et rendu des verres anciens pour les restitutions historiques". Electronic Thesis or Diss., Littoral, 2024. http://www.theses.fr/2024DUNK0730.
Testo completoOver the last twenty years, the virtual restoration of ancient environments that have disappeared or deteriorated has become an essential tool for historians, both as part of their research and for communicating their results to the public. Many restitution projects from Renaissance to 18th century include hand-blown glass objects, either for window works or in various types of lighting devices. These glass objects, made by hand, are characterized by their irregular surface, the presence of bubbles and by a continuously varying index of refraction caused by the mixing of several glass pastes of different compositions. When they are used in windows or in lanterns, these irregularities produce complex lighting effects that are still challenging to compute using photorealistic light simulation techniques. In this thesis, we first study the geometric representation of old glass objects as used in windows and lanterns. We used signed distance functions to implicitly define the characteristic irregular surface and bubbles of old glass. Non-linear sphere tracing allows the simulation of the curved trajectory of light rays inside heterogeneous glass. These tools constitute a general model for the simulation of light transport through these irregular objects, allowing their integration into photorealistic light simulation algorithms such as path tracing. A phenomenological model is then used to generate plausible input data for modeling crown and cylinder blown glass. We introduce a method based on texture coordinates to easily create and render complex objects made of individual flat pieces of glass cut from multiple glass panels, as tipically seen in stained-glass windows. We then propose a method for estimating the complex transmitted lighting produced by a light source through an irregular and heterogeneous glass panel. We characterize the set of admissible light paths existing between two points of space as the set of stationary optical paths (Fermat's principle). Finding all the admissible paths resorts to solving a non-linear optimization problem consisting in finding all the stationary points of a function of several variables, for which we use Newton's method and results from theoretical seismology. This technique integrates seamlessly into stochastic methods like path tracing, ubiquitous in photorealistic image synthesis. Our method compares favorably to state-of-thè-art methods in terms of speed of convergence and exploration of the path space. Contrarily to the state-of-the-art, our use of Fermat's principle allows us to generalize our work to transparent media with continuously varying index of refraction. Finally, we adapt our old glass window model to real time rasterized rendering. Direct ray tracing through objects made of flat pieces of glass is realized using a sphere tracing algorithm. We use traced rays and geometry buffers to warp a rasterized rendering of the scene and reproduce in screen space the refraction effects created by a glass window. We pre-compute the complex light field produced by a luminaire made of old glass and encode it inside a small size, fully connected neural network backed by a multiresolution grid encoding. This allows the real time reconstruction of the incident lighting produced by a complex luminaire, as encountered in restitution projects where the most of the lighting is provided by complex lighting devices such as lanterns
Duvenhage, Bernardt. "Light beam tracing for multi-bounce specular and glossy transport paths". Thesis, 2015. http://hdl.handle.net/2263/50893.
Testo completoThesis (PhD)--University of Pretoria, 2015.
tm2015
Computer Science
PhD
Unrestricted
Atti di convegni sul tema "Specular light paths"
Duvenhage, B., K. Bouatouch e D. G. Kourie. "Light Beam Tracing for Multi-Bounce Specular and Glossy Transport Paths". In the Southern African Institute for Computer Scientist and Information Technologists Annual Conference 2014. New York, New York, USA: ACM Press, 2014. http://dx.doi.org/10.1145/2664591.2664610.
Testo completoBabcock, R. W., H. W. Marshall, R. D. Reasenberg e S. Reasenberg. "Full Aperture Metrology for High Precision Astrometry". In Space Optics for Astrophysics and Earth and Planetary Remote Sensing. Washington, D.C.: Optica Publishing Group, 1988. http://dx.doi.org/10.1364/soa.1988.tub5.
Testo completoBeckers, Benoit. "Las escalas de la luz". In International Conference Virtual City and Territory. Barcelona: Centre de Política de Sòl i Valoracions, 2009. http://dx.doi.org/10.5821/ctv.7584.
Testo completoKutulakos, K. N., e E. Steger. "A theory of refractive and specular 3D shape by light-path triangulation". In Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1. IEEE, 2005. http://dx.doi.org/10.1109/iccv.2005.26.
Testo completoGullikson, E., D. Stearns, S. Baker, E. Spiller, J. Bjorkholm e J. Taylor. "Scattering from normal incidence EUV optics". In Optical Fabrication and Testing. Washington, D.C.: Optica Publishing Group, 1998. http://dx.doi.org/10.1364/oft.1998.otud.2.
Testo completoNick, David C., e R. M. A. Azzam. "Current-ratio uniform-sensitivity thickness monitor (CRUST-M)". In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/oam.1989.wv8.
Testo completo