Letteratura scientifica selezionata sul tema "Special cubic fourfolds"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Special cubic fourfolds".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Special cubic fourfolds"
Addington, Nicolas, e Asher Auel. "Some Non-Special Cubic Fourfolds". Documenta Mathematica 23 (2018): 637–51. http://dx.doi.org/10.4171/dm/628.
Testo completoTruong, Hoang Le, e Hoang Ngoc Yen. "A note on special cubic fourfolds of small discriminants". Forum Mathematicum 33, n. 5 (26 agosto 2021): 1137–55. http://dx.doi.org/10.1515/forum-2020-0355.
Testo completoLi, Zhiyuan, e Letao Zhang. "Modular forms and special cubic fourfolds". Advances in Mathematics 245 (ottobre 2013): 315–26. http://dx.doi.org/10.1016/j.aim.2013.06.003.
Testo completoTanimoto, Sho, e Anthony Várilly-Alvarado. "Kodaira dimension of moduli of special cubic fourfolds". Journal für die reine und angewandte Mathematik (Crelles Journal) 2019, n. 752 (1 luglio 2019): 265–300. http://dx.doi.org/10.1515/crelle-2016-0053.
Testo completoLaterveer, Robert. "Algebraic cycles and very special cubic fourfolds". Indagationes Mathematicae 30, n. 2 (marzo 2019): 317–28. http://dx.doi.org/10.1016/j.indag.2018.12.002.
Testo completoPertusi, Laura. "Fourier–Mukai partners for very general special cubic fourfolds". Mathematical Research Letters 28, n. 1 (2021): 213–43. http://dx.doi.org/10.4310/mrl.2021.v28.n1.a9.
Testo completoBülles, Tim-Henrik. "Motives of moduli spaces on K3 surfaces and of special cubic fourfolds". manuscripta mathematica 161, n. 1-2 (7 novembre 2018): 109–24. http://dx.doi.org/10.1007/s00229-018-1086-0.
Testo completoKuznetsov, Alexander, e Alexander Perry. "Derived categories of Gushel–Mukai varieties". Compositio Mathematica 154, n. 7 (25 maggio 2018): 1362–406. http://dx.doi.org/10.1112/s0010437x18007091.
Testo completoBayer, Arend, Martí Lahoz, Emanuele Macrì, Howard Nuer, Alexander Perry e Paolo Stellari. "Stability conditions in families". Publications mathématiques de l'IHÉS 133, n. 1 (17 maggio 2021): 157–325. http://dx.doi.org/10.1007/s10240-021-00124-6.
Testo completoPelzl, J., e C. Dimitropoulos. "Effect of Deuteration on the Phase Transitions and on the Critical Dynamics in Ammonium Hexachlorometallates". Zeitschrift für Naturforschung A 49, n. 1-2 (1 febbraio 1994): 232–46. http://dx.doi.org/10.1515/zna-1994-1-235.
Testo completoTesi sul tema "Special cubic fourfolds"
Hernandez, Gomez Jordi Emanuel. "Transformations spéciales des quadriques". Electronic Thesis or Diss., Université de Toulouse (2023-....), 2024. http://www.theses.fr/2024TLSES086.
Testo completoIn this thesis we study special self-birational transformations of smooth quadrics. We obtain a classification result in dimensions 3 and 4. In these two cases, we prove that there is only one example. In the case of dimension 3, it is given by the linear system of quadrics passing through a rational normal quartic curve. In the case of dimension 4, it is given by the linear system of cubic complexes passing through a non-minimal K3 surface of degree 10 with 2 skew (-1)-lines that is not contained in any other quadric. The base locus scheme of the inverse map is in general a smooth surface of the same type. Moreover, we prove that the corresponding pair of K3 surfaces are non-isomorphic Fourier-Mukai parters. These surfaces are also related to special cubic fourfolds. More precisely, we show that a general cubic in the Hassett divisor of special cubic fourfolds of discriminant 14 contains such a surface. This is the first example of a family of non-rational surfaces characterizing cubics in this divisor. The study of special birational transformations of quadrics is motivated by an example described by M. Bernardara, E. Fatighenti, L. Manivel, et F. Tanturri, who provided a list of 64 new families of Fano fourfolds of K3 type. Many examples in their list give varieties that admit multiple birational contractions realized as blow-ups of Fano manifolds along non-minimal K3 surfaces. The nature of the constructions implies that the corresponding K3 surfaces have equivalent derived categories. We partially answer the natural question: for which families the corresponding K3 surfaces are isomorphic, and for which families they are not?
Capitoli di libri sul tema "Special cubic fourfolds"
Nuer, Howard. "Unirationality of Moduli Spaces of Special Cubic Fourfolds and K3 Surfaces". In Lecture Notes in Mathematics, 161–67. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46209-7_5.
Testo completoAuel, Asher. "Brill–Noether Special Cubic Fourfolds of Discriminant 14". In Facets of Algebraic Geometry, 29–53. Cambridge University Press, 2022. http://dx.doi.org/10.1017/9781108877831.002.
Testo completo