Letteratura scientifica selezionata sul tema "Sound-waves"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Sound-waves".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Sound-waves"
Hults, Morris G. "Sound waves". Physics Teacher 39, n. 6 (settembre 2001): 377. http://dx.doi.org/10.1119/1.1531955.
Testo completoWolf, Franz Josef. "Sound absorber for sound waves". Journal of the Acoustical Society of America 111, n. 6 (2002): 2535. http://dx.doi.org/10.1121/1.1492935.
Testo completoDunkel, Jörn. "Rolling sound waves". Nature Materials 17, n. 9 (23 agosto 2018): 759–60. http://dx.doi.org/10.1038/s41563-018-0155-9.
Testo completoJones, Willie. "Sound waves for brain waves - [update]". IEEE Spectrum 46, n. 1 (gennaio 2009): 16–17. http://dx.doi.org/10.1109/mspec.2009.4734300.
Testo completoKenyon, Kern E. "Momentum of sound waves." Physics Essays 21, n. 1 (1 marzo 2008): 68–69. http://dx.doi.org/10.4006/1.3000091.
Testo completoEisenstein, Daniel J., e Charles L. Bennett. "Cosmic sound waves rule". Physics Today 61, n. 4 (aprile 2008): 44–50. http://dx.doi.org/10.1063/1.2911177.
Testo completoSwinbanks, Malcolm A. "Attenuation of sound waves". Journal of the Acoustical Society of America 80, n. 4 (ottobre 1986): 1281. http://dx.doi.org/10.1121/1.394459.
Testo completoSwinbanks, Malcolm A. "Attenuation of sound waves". Journal of the Acoustical Society of America 81, n. 5 (maggio 1987): 1655. http://dx.doi.org/10.1121/1.395061.
Testo completoAshley, Steven. "Sound Waves At Work". Mechanical Engineering 120, n. 03 (1 marzo 1998): 80–84. http://dx.doi.org/10.1115/1.1998-mar-2.
Testo completoKann, K. B. "Sound waves in foams". Colloids and Surfaces A: Physicochemical and Engineering Aspects 263, n. 1-3 (agosto 2005): 315–19. http://dx.doi.org/10.1016/j.colsurfa.2005.04.010.
Testo completoTesi sul tema "Sound-waves"
Zinoviev, Alexei. "Application of the Multi-Modal Integral Method (MMIM) to sound wave scattering in an acoustic waveguide". Title page, contents and abstract only, 1999. http://hdl.handle.net/2440/37720.
Testo completoThesis (Ph.D.)--School of Mechanical Engineering, 1999.
Chambers, James P. "Scale model experiments on the diffraction and scattering of sound by geometrical step discontinuities and curved rough surfaces". Diss., Georgia Institute of Technology, 1994. http://hdl.handle.net/1853/17858.
Testo completoYargus, Michael W. "Experimental study of sound waves in sandy sediment /". Thesis, Connect to this title online; UW restricted, 2003. http://hdl.handle.net/1773/6075.
Testo completoMenchon, Enrich Ricard. "Spatial adiabatic passage: light, sound and matter waves". Doctoral thesis, Universitat Autònoma de Barcelona, 2013. http://hdl.handle.net/10803/129476.
Testo completoThe birth of Quantum Mechanics provided a theoretical framework that could explain some previously experimentally reported phenomena, such as the black body radiation, the photoelectric effect or the spectral lines of atomic gases, and also allowed for a better understanding of fundamental aspects related to the wave-particle duality and the interaction between radiation and matter. Quantum Mechanics has been also the origin of more specific disciplines such as Quantum Optics or Quantum Information science, which are partially devoted to a more applied research field that is known as Quantum Engineering. In this context, adiabatic passage processes consisting in the adiabatic following of an eigenstate of the system, which allows for a very robust and efficient control of the population transfer between two asymptotic states have been proposed. As many other processes in Quantum Mechanics, adiabatic passage processes are purely oscillatory and can be extended to other non-quantum physical systems, which also support oscillating quantities. In this thesis, spatial adiabatic passage processes are addressed in different oscillatory physical systems to control light, sound and matter waves propagation in systems of coupled waveguides, and the transfer of single cold atoms in harmonic potentials. Additionally, we make use of the robustness and high efficiency of the adiabatic passage to propose new devices and discuss new implementations in these various fields. To be specific, we experimentally demonstrate the spatial adiabatic passage of light in a system of three evanescent-coupled CMOS-compatible silicon oxide TIR waveguides, which consists in a complete transfer of light intensity between the outermost waveguides of the system. The advantage of using spatial adiabatic passage compared to standard directional couplers is that the light transfer is robust in front of technological fluctuations and does not depend on precise parameter values. Additionally, this is the first spatial adiabatic passage of light device fabricated in CMOS-compatible technology, which allows for massive and low cost integration. Furthermore, we also experimentally show that this system of coupled waveguides behaves as a simultaneously low- and high-pass spectral filter, with features that makes it an alternative to other integrated filters like interferenceñbased and absorbance-based filters. In addition, we address the spatial adiabatic passage of sound waves in systems of two coupled linear defects in sonic crystals. By calculating the band diagrams to analyze the available supermodes of the system and modifying the geometry of the linear defects along the propagation distance appropriately, we design devices working as a multifrequency adiabatic splitter, as a coupler and also as a phase difference analyser. Furthermore, we discuss a novel method to inject, extract and velocity filter neutral atoms in a ring trap via a spatial adiabatic passage process by using two extra waveguides. The proposal is based on the adiabatic following of a transversal eigenstate of the system. Semianalytical calculations are performed, which perfectly match with the results of the numerical integration of the Schrˆdinger equation. We also show that our proposal could be experimentally implemented for realistic state-of-the-art parameters of ultracold atoms in optical dipole potentials. Finally, we study the spatial adiabatic passage of a single cold atom in two-dimensional triple-well potentials, going beyond the well-understood effective one-dimensional systems and studying the possibilities arising from the additional degrees of freedom. On the one hand, a system of three coupled identical harmonic potentials with the traps lying in a triangular configuration is proposed for matter wave interferometry taking profit of a level crossing appearing in the energy spectrum. On the other hand, angular momentum is successfully generated in a similar configuration where the three harmonic traps have different trapping frequencies by simultaneously following two eigenstates of the system.
Legendre, César. "On the interactions of sound waves and vortices". Doctoral thesis, Universite Libre de Bruxelles, 2015. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209147.
Testo completoreflection and refraction effects. This work focusses on the effects of mean flow
vorticity on the acoustic propagation. First, a theoretical background is presented
in chapters 2-5. This part contains: (i) the fluid dynamics and thermodynamics
relations; (ii) theories of sound generation by turbulent flows; and (iii) operators taken
from scientific literature to take into account the vorticity effects on acoustics. Later,
a family of scalar operators based on total enthalpy terms are derived to handle mean
vorticity effects of arbitrary flows in acoustics (chapter 6). Furthermore, analytical
solutions of Pridmore-Brown’s equation are featured considering exponential boundary
layers whose profile depend on the acoustic parameters of the problem (chapter 7).
Finally, an extension of Pridmore-Brown’s equation is formulated for predicting the
acoustic propagation over a locally-reacting liner in presence of a boundary layer of
linear velocity profile superimposed to a constant cross flow (chapter 8).
Doctorat en Sciences de l'ingénieur
info:eu-repo/semantics/nonPublished
Zinoviev, Alexei lurjevich. "Application of the Multi-Modal Integral Method (MMIM) to sound wave scattering in an acoustic waveguide". Click here to access, 1999. http://thesis.library.adelaide.edu.au/public/adt-SUA20050905.140025.
Testo completoTitle from screen page (viewed September 13 2005). Includes bibliographical references. Also available in print version.
Wang, Qiang. "Atmospheric refraction and propagation over curved surfaces". n.p, 1997. http://ethos.bl.uk/.
Testo completoDostal, Jack Alan. "An investigation into student understanding of longitudinal standing waves". Thesis, Montana State University, 2008. http://etd.lib.montana.edu/etd/2008/dostal/DostalJ1208.pdf.
Testo completoCornell, Jason E. "Verification of the single scattering analytical model for mode coupling effects caused by solitons". Thesis, Monterey, California : Naval Postgraduate School, 2009. http://edocs.nps.edu/npspubs/scholarly/theses/2009/Sep/09Sep_Cornell.pdf.
Testo completoThesis Advisor(s): Colosi, John A. ; Smith, Kevin B. "September 2009." Description based on title screen as viewed on November 5, 2009. Author(s) subject terms: Shallow-water environment, 3-D simulations, vertical mode coupling, Internal Solitary Waves, solitons, acoustic variability. Includes bibliographical references (p. 55). Also available in print.
Ailes-Sengers, Lynn H. "Pulse broadening, polarimetric and angular memory effects of wave scattering from very rough surfaces /". Thesis, Connect to this title online; UW restricted, 1996. http://hdl.handle.net/1773/5856.
Testo completoLibri sul tema "Sound-waves"
Rogers, Janet Marie. Sound waves. Victoria, BC: Ekstasis Editions, 2006.
Cerca il testo completoSteve, Parker. Making waves: Sound. Oxford: Heinemann Library, 2005.
Cerca il testo completoYukio, Mishima. The sound of waves. New York: Vintage Books, 1994.
Cerca il testo completoArdley, Neil. Sound waves to music. London: Gloucester Press, 1990.
Cerca il testo completoWinterberg, Jenna. Sound waves and communication. Huntington Beach, CA: Teacher Created Materials, 2016.
Cerca il testo completoHillesheim, Heather. Sound and light. New York NY: Infobase Learning, 2012.
Cerca il testo completoBarile, Claudia, Caterina Casavola, Giovanni Pappalettera e Vimalathithan Paramsamy Kannan. Sound Waves and Acoustic Emission. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-23789-8.
Testo completoHall, Pamela. Listen!: Learn about sound. Mankato, Minn: Child's World, 2011.
Cerca il testo completoAbagnali, Vitale. Sound waves: Propagation, frequencies, and effects. Hauppauge, N.Y: Nova Science Publishers, 2011.
Cerca il testo completoArabadzhi, V. I. Zvuk v prirode. Nizhniĭ Novgorod: Nizhegorodskiĭ gumanitarnyĭ t︠s︡entr, 1997.
Cerca il testo completoCapitoli di libri sul tema "Sound-waves"
Davies, Alan J. "Sound Waves". In Waves, 68–81. London: Macmillan Education UK, 1993. http://dx.doi.org/10.1007/978-1-349-12067-3_5.
Testo completoKrüger, Timm, Halim Kusumaatmaja, Alexandr Kuzmin, Orest Shardt, Goncalo Silva e Erlend Magnus Viggen. "Sound Waves". In The Lattice Boltzmann Method, 493–529. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-44649-3_12.
Testo completoHartmann, William M. "Sound Waves". In Principles of Musical Acoustics, 39–52. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-6786-1_5.
Testo completoDavis, Julian L. "Sound Waves". In Wave Propagation in Solids and Fluids, 159–91. New York, NY: Springer New York, 1988. http://dx.doi.org/10.1007/978-1-4612-3886-7_6.
Testo completoBrekhovskikh, Leonid M., e Valery Goncharov. "Sound Waves". In Springer Series on Wave Phenomena, 262–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-85034-9_12.
Testo completoRadi, Hafez A., e John O. Rasmussen. "Sound Waves". In Undergraduate Lecture Notes in Physics, 499–530. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-23026-4_15.
Testo completoPeterson, Hamlet A. "Sound Waves". In Physeal Injury Other Than Fracture, 329–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22563-5_15.
Testo completoMaciel, Walter J. "Sound Waves". In Undergraduate Lecture Notes in Physics, 97–108. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04328-9_8.
Testo completoOlbers, Dirk, Jürgen Willebrand e Carsten Eden. "Sound Waves". In Ocean Dynamics, 161–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-23450-7_6.
Testo completoBrekhovskikh, Leonid, e Valery Goncharov. "Sound Waves". In Springer Series on Wave Phenomena, 262–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-96861-7_12.
Testo completoAtti di convegni sul tema "Sound-waves"
Merlino, Robert L., Bengt Eliasson e Padma K. Shukla. "Dust-Acoustic Waves: Visible Sound Waves". In NEW DEVELOPMENTS IN NONLINEAR PLASMA PHYSICS: Proceedings of the 2009 ICTP Summer College on Plasma Physics and International Symposium on Cutting Edge Plasma Physics. AIP, 2009. http://dx.doi.org/10.1063/1.3266792.
Testo completoMendonça, J. T., Padma K. Shukla, José Tito Mendonça, Bengt Eliasson e David Resedes. "Sound waves in ultra-cold matter". In INTERNATIONAL TOPICAL CONFERENCE ON PLASMA SCIENCE: Strongly Coupled Ultra-Cold and Quantum Plasmas. AIP, 2012. http://dx.doi.org/10.1063/1.3679584.
Testo completoSlinkov, Grigorii, Steven Becker, Dirk Englund e Birgit Stiller. "Photonic Activation Function Using Sound Waves". In 2023 International Conference on Photonics in Switching and Computing (PSC). IEEE, 2023. http://dx.doi.org/10.1109/psc57974.2023.10297228.
Testo completoGodin, Oleg A. "Rayleigh scattering of spherical sound waves". In OCEANS 2011. IEEE, 2011. http://dx.doi.org/10.23919/oceans.2011.6106919.
Testo completoPeriago, Cristina, Arcadi Pejuan, Xavier Jaen e Xavier Bohigas. "Misconceptions about the propagation of sound waves". In 2009 EAEEIE Annual Conference. IEEE, 2009. http://dx.doi.org/10.1109/eaeeie.2009.5335478.
Testo completoPereselkov, Sergey A., Pavel V. Rybyanets, Elena S. Kaznacheeva, Mohsen Badiey e Venedikt M. Kuz'kin. "Broadband sound scattering by intense internal waves". In 2020 Days on Diffraction (DD). IEEE, 2020. http://dx.doi.org/10.1109/dd49902.2020.9274630.
Testo completoPeplow, Andrew, Börje Nilsson, Börje Nilsson, Louis Fishman, Anders Karlsson e Sven Nordebo. "Acoustic waves in variable sound speed profiles". In MATHEMATICAL MODELING OF WAVE PHENOMENA: 3rd Conference on Mathematical Modeling of Wave Phenomena, 20th Nordic Conference on Radio Science and Communications. AIP, 2009. http://dx.doi.org/10.1063/1.3117088.
Testo completoKatayama, M. "Comparison on the characteristics of natural sound of waves and imitation sound of waves in terms of comfort level". In Oceans 2003. Celebrating the Past ... Teaming Toward the Future (IEEE Cat. No.03CH37492). IEEE, 2003. http://dx.doi.org/10.1109/oceans.2003.178471.
Testo completoAydogan, Hakan. "EEG response of different sound waves and frequencies". In 2016 24th Signal Processing and Communication Application Conference (SIU). IEEE, 2016. http://dx.doi.org/10.1109/siu.2016.7496212.
Testo completoPowell, Alan. "Role of transitory waves in screech sound production". In 38th Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2000. http://dx.doi.org/10.2514/6.2000-469.
Testo completoRapporti di organizzazioni sul tema "Sound-waves"
Yargus, Michael W. Experimental Study of Sound Waves in Sandy Sediment. Fort Belvoir, VA: Defense Technical Information Center, maggio 2003. http://dx.doi.org/10.21236/ada422568.
Testo completoBuckingham, Michael J. Spatial Statistics of Deep-Water Ambient Noise; Dispersion Relations for Sound Waves and Shear Waves. Fort Belvoir, VA: Defense Technical Information Center, settembre 2014. http://dx.doi.org/10.21236/ada618055.
Testo completoFabian, A. On Viscosity, Conduction and Sound Waves in the Intracluster Medium. Office of Scientific and Technical Information (OSTI), gennaio 2005. http://dx.doi.org/10.2172/839653.
Testo completoHamilton, Mark F. Problems in Nonlinear Acoustics: Rayleigh Waves, Pulsed Sound Beams, and Waveguides. Fort Belvoir, VA: Defense Technical Information Center, agosto 1993. http://dx.doi.org/10.21236/ada274587.
Testo completoGrigorieva, Natalie S., James Mercer, Jeffrey Simmen e Michael Wolfson. Near-Axial Interference Effects for Long-Range Sound Transmissions through Ocean Internal Waves. Fort Belvoir, VA: Defense Technical Information Center, settembre 2006. http://dx.doi.org/10.21236/ada612578.
Testo completoGrigorieva, Natalie S., Gregory M. Fridman, James Mercer, Jeffrey Simmen, Rex Andrew e Michael Wolfson. Near-Axial Interference Effects for Long-Range Sound Transmissions through Ocean Internal Waves. Fort Belvoir, VA: Defense Technical Information Center, settembre 2008. http://dx.doi.org/10.21236/ada533094.
Testo completoGrigorieva, Natalie S., James Mercer, Jeffrey Simmen e Michael Wolfson. Near-Axial Interference Effects for Long-Range Sound Transmissions through Ocean Internal Waves. Fort Belvoir, VA: Defense Technical Information Center, settembre 2007. http://dx.doi.org/10.21236/ada541759.
Testo completoWilson, D. K. Weak Scattering of Sound Waves in Random Media That Have Arbitrary Power-Law Spectra. Fort Belvoir, VA: Defense Technical Information Center, aprile 1999. http://dx.doi.org/10.21236/ada363637.
Testo completoHaff, P. K. Microscopic modelling of sound waves in granular material: Quarterly progress report, January 1, 1989--March 31, 1989. Office of Scientific and Technical Information (OSTI), marzo 1989. http://dx.doi.org/10.2172/6182233.
Testo completoStaroseisky, Alexander, Igor Fedchenia e Wenlong Li. Intensification of Transport Processes in Fluid-Filled Porous Media by Sound Waves. Application to Fuel Cell Technology. Fort Belvoir, VA: Defense Technical Information Center, gennaio 2004. http://dx.doi.org/10.21236/ada420039.
Testo completo