Segui questo link per vedere altri tipi di pubblicazioni sul tema: Solvable groups.

Articoli di riviste sul tema "Solvable groups"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "Solvable groups".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.

1

Albrecht, Ulrich. "The construction of $A$-solvable Abelian groups". Czechoslovak Mathematical Journal 44, n. 3 (1994): 413–30. http://dx.doi.org/10.21136/cmj.1994.128480.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Cherlin, Gregory L., e Ulrich Felgner. "Homogeneous Solvable Groups". Journal of the London Mathematical Society s2-44, n. 1 (agosto 1991): 102–20. http://dx.doi.org/10.1112/jlms/s2-44.1.102.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Atanasov, Risto, e Tuval Foguel. "Solitary Solvable Groups". Communications in Algebra 40, n. 6 (giugno 2012): 2130–39. http://dx.doi.org/10.1080/00927872.2011.574241.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Sarma, B. K. "Solvable fuzzy groups". Fuzzy Sets and Systems 106, n. 3 (settembre 1999): 463–67. http://dx.doi.org/10.1016/s0165-0114(97)00264-9.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Ray, Suryansu. "Solvable fuzzy groups". Information Sciences 75, n. 1-2 (dicembre 1993): 47–61. http://dx.doi.org/10.1016/0020-0255(93)90112-y.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Chen, P. B., e T. S. Wu. "On solvable groups". Mathematische Annalen 276, n. 1 (marzo 1986): 43–51. http://dx.doi.org/10.1007/bf01450922.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Abobala, Mohammad, e Mehmet Celik. "Under Solvable Groups as a Novel Generalization of Solvable Groups". Galoitica: Journal of Mathematical Structures and Applications 2, n. 1 (2022): 14–20. http://dx.doi.org/10.54216/gjmsa.020102.

Testo completo
Abstract (sommario):
The objective of this paper is to define a new generalization of solvable groups by using the concept of power maps which generalize the classical concept of powers (exponents). Also, it presents many elementary properties of this new generalization in terms of theorems.
Gli stili APA, Harvard, Vancouver, ISO e altri
8

GRUNEWALD, FRITZ, BORIS KUNYAVSKII e EUGENE PLOTKIN. "CHARACTERIZATION OF SOLVABLE GROUPS AND SOLVABLE RADICAL". International Journal of Algebra and Computation 23, n. 05 (agosto 2013): 1011–62. http://dx.doi.org/10.1142/s0218196713300016.

Testo completo
Abstract (sommario):
We give a survey of new characterizations of finite solvable groups and the solvable radical of an arbitrary finite group which were obtained over the past decade. We also discuss generalizations of these results to some classes of infinite groups and their analogues for Lie algebras. Some open problems are discussed as well.
Gli stili APA, Harvard, Vancouver, ISO e altri
9

ZARRIN, MOHAMMAD. "GROUPS WITH FEW SOLVABLE SUBGROUPS". Journal of Algebra and Its Applications 12, n. 06 (9 maggio 2013): 1350011. http://dx.doi.org/10.1142/s0219498813500114.

Testo completo
Abstract (sommario):
In this paper, we give some sufficient condition on the number of proper solvable subgroups of a group to be nilpotent or solvable. In fact, we show that every group with at most 5 (respectively, 58) proper solvable subgroups is nilpotent (respectively, solvable). Also these bounds cannot be improved.
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Khazal, R., e N. P. Mukherjee. "A note onp-solvable and solvable finite groups". International Journal of Mathematics and Mathematical Sciences 17, n. 4 (1994): 821–24. http://dx.doi.org/10.1155/s0161171294001158.

Testo completo
Abstract (sommario):
The notion of normal index is utilized in proving necessary and sufficient conditions for a groupGto be respectively,p-solvable and solvable wherepis the largest prime divisor of|G|. These are used further in identifying the largest normalp-solvable and normal solvable subgroups, respectively, ofG.
Gli stili APA, Harvard, Vancouver, ISO e altri
11

Kirtland, Joseph. "Finite solvable multiprimitive groups". Communications in Algebra 23, n. 1 (gennaio 1995): 335–56. http://dx.doi.org/10.1080/00927879508825224.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
12

Abels, Herbert, e Roger Alperin. "Undistorted solvable linear groups". Transactions of the American Mathematical Society 363, n. 06 (1 giugno 2011): 3185. http://dx.doi.org/10.1090/s0002-9947-2011-05237-2.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
13

Rhemtulla, Akbar, e Said Sidki. "Factorizable infinite solvable groups". Journal of Algebra 122, n. 2 (maggio 1989): 397–409. http://dx.doi.org/10.1016/0021-8693(89)90225-1.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
14

Vesanen, Ari. "Solvable Groups and Loops". Journal of Algebra 180, n. 3 (marzo 1996): 862–76. http://dx.doi.org/10.1006/jabr.1996.0098.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
15

Budkin, A. I. "Dominions in Solvable Groups". Algebra and Logic 54, n. 5 (novembre 2015): 370–79. http://dx.doi.org/10.1007/s10469-015-9358-1.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
16

Tent, Joan F. "Quadratic rational solvable groups". Journal of Algebra 363 (agosto 2012): 73–82. http://dx.doi.org/10.1016/j.jalgebra.2012.04.019.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
17

Timoshenko, E. I. "Universally equivalent solvable groups". Algebra and Logic 39, n. 2 (marzo 2000): 131–38. http://dx.doi.org/10.1007/bf02681667.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
18

Liu, Yang, e Zi Qun Lu. "Solvable D 2-groups". Acta Mathematica Sinica, English Series 33, n. 1 (15 agosto 2016): 77–95. http://dx.doi.org/10.1007/s10114-016-5353-2.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
19

Tyutyunov, V. N. "Characterization ofr-solvable groups". Siberian Mathematical Journal 41, n. 1 (gennaio 2000): 180–87. http://dx.doi.org/10.1007/bf02674008.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
20

CHIODO, MAURICE. "FINITELY ANNIHILATED GROUPS". Bulletin of the Australian Mathematical Society 90, n. 3 (13 giugno 2014): 404–17. http://dx.doi.org/10.1017/s0004972714000355.

Testo completo
Abstract (sommario):
AbstractIn 1976, Wiegold asked if every finitely generated perfect group has weight 1. We introduce a new property of groups, finitely annihilated, and show that this might be a possible approach to resolving Wiegold’s problem. For finitely generated groups, we show that in several classes (finite, solvable, free), being finitely annihilated is equivalent to having noncyclic abelianisation. However, we also construct an infinite family of (finitely presented) finitely annihilated groups with cyclic abelianisation. We apply our work to show that the weight of a nonperfect finite group, or a nonperfect finitely generated solvable group, is the same as the weight of its abelianisation. This recovers the known partial results on the Wiegold problem: a finite (or finitely generated solvable) perfect group has weight 1.
Gli stili APA, Harvard, Vancouver, ISO e altri
21

Sardar, Pranab. "Packing subgroups in solvable groups". International Journal of Algebra and Computation 25, n. 05 (agosto 2015): 917–26. http://dx.doi.org/10.1142/s0218196715500253.

Testo completo
Abstract (sommario):
We show that any subgroup of a (virtually) nilpotent-by-polycyclic group satisfies the bounded packing property of Hruska–Wise [Packing subgroups in relatively hyperbolic groups, Geom. Topol. 13 (2009) 1945–1988]. In particular, the same is true for all finitely generated subgroups of metabelian groups and linear solvable groups. However, we find an example of a finitely generated solvable group of derived length 3 which admits a finitely generated metabelian subgroup without the bounded packing property. In this example the subgroup is a retract also. Thus we obtain a negative answer to Problem 2.27 of the above paper. On the other hand, we show that polycyclic subgroups of solvable groups satisfy the bounded packing property.
Gli stili APA, Harvard, Vancouver, ISO e altri
22

Jafarpour, M., H. Aghabozorgi e B. Davvaz. "Solvable groups derived from hypergroups". Journal of Algebra and Its Applications 15, n. 04 (19 febbraio 2016): 1650067. http://dx.doi.org/10.1142/s0219498816500675.

Testo completo
Abstract (sommario):
In this paper, we introduce the smallest equivalence relation [Formula: see text] on a hypergroup [Formula: see text] such that the quotient [Formula: see text], the set of all equivalence classes, is a solvable group. The characterization of solvable groups via strongly regular relations is investigated and several results on the topic are presented.
Gli stili APA, Harvard, Vancouver, ISO e altri
23

Albrecht, Ulrich F. "Extension functors on the category of $A$-solvable abelian groups". Czechoslovak Mathematical Journal 41, n. 4 (1991): 685–94. http://dx.doi.org/10.21136/cmj.1991.102499.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
24

Roman’kov, Vitaly. "Embedding theorems for solvable groups". Proceedings of the American Mathematical Society 149, n. 10 (28 luglio 2021): 4133–43. http://dx.doi.org/10.1090/proc/15562.

Testo completo
Abstract (sommario):
In this paper, we prove a series of results on group embeddings in groups with a small number of generators. We show that each finitely generated group G G lying in a variety M {\mathcal M} can be embedded in a 4 4 -generated group H ∈ M A H \in {\mathcal M}{\mathcal A} ( A {\mathcal A} means the variety of abelian groups). If G G is a finite group, then H H can also be found as a finite group. It follows, that any finitely generated (finite) solvable group G G of the derived length l l can be embedded in a 4 4 -generated (finite) solvable group H H of length l + 1 l+1 . Thus, we answer the question of V. H. Mikaelian and A. Yu. Olshanskii. It is also shown that any countable group G ∈ M G\in {\mathcal M} , such that the abelianization G a b G_{ab} is a free abelian group, is embeddable in a 2 2 -generated group H ∈ M A H\in {\mathcal M}{\mathcal A} .
Gli stili APA, Harvard, Vancouver, ISO e altri
25

Dymarz, Tullia. "Envelopes of certain solvable groups". Commentarii Mathematici Helvetici 90, n. 1 (2015): 195–224. http://dx.doi.org/10.4171/cmh/351.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
26

Rogers, Pat, Howard Smith e Donald Solitar. "Tarski's Problem for Solvable Groups". Proceedings of the American Mathematical Society 96, n. 4 (aprile 1986): 668. http://dx.doi.org/10.2307/2046323.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
27

Roman’kov, V. A. "Algorithmic theory of solvable groups". Prikladnaya Diskretnaya Matematika, n. 52 (2021): 16–64. http://dx.doi.org/10.17223/20710410/52/2.

Testo completo
Abstract (sommario):
The purpose of this survey is to give some picture of what is known about algorithmic and decision problems in the theory of solvable groups. We will provide a number of references to various results, which are presented without proof. Naturally, the choice of the material reported on reflects the author’s interests and many worthy contributions to the field will unfortunately go without mentioning. In addition to achievements in solving classical algorithmic problems, the survey presents results on other issues. Attention is paid to various aspects of modern theory related to the complexity of algorithms, their practical implementation, random choice, asymptotic properties. Results are given on various issues related to mathematical logic and model theory. In particular, a special section of the survey is devoted to elementary and universal theories of solvable groups. Special attention is paid to algorithmic questions regarding rational subsets of groups. Results on algorithmic problems related to homomorphisms, automorphisms, and endomorphisms of groups are presented in sufficient detail.
Gli stili APA, Harvard, Vancouver, ISO e altri
28

Mohammadzadeh, F., e Elahe Mohammadzadeh. "On $\alpha$-solvable fundamental groups". Journal of Algebraic Hyperstructures and Logical Algebras 2, n. 2 (1 maggio 2021): 35–46. http://dx.doi.org/10.52547/hatef.jahla.2.2.35.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
29

SUZUKI, Michio. "Solvable Generation of Finite Groups". Hokkaido Mathematical Journal 16, n. 1 (febbraio 1987): 109–13. http://dx.doi.org/10.14492/hokmj/1381517825.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
30

Meierfrankenfeld, Ulrich, Richard E. Phillips e Orazio Puglisi. "Locally Solvable Finitary Linear Groups". Journal of the London Mathematical Society s2-47, n. 1 (febbraio 1993): 31–40. http://dx.doi.org/10.1112/jlms/s2-47.1.31.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
31

Farrell, F. Thomas, e Peter A. Linnell. "K-Theory of Solvable Groups". Proceedings of the London Mathematical Society 87, n. 02 (settembre 2003): 309–36. http://dx.doi.org/10.1112/s0024611503014072.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
32

Pál, Hegedus. "Structure of solvable rational groups". Proceedings of the London Mathematical Society 90, n. 02 (25 febbraio 2005): 439–71. http://dx.doi.org/10.1112/s0024611504015035.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
33

Snow, Dennis M. "Complex orbits of solvable groups". Proceedings of the American Mathematical Society 110, n. 3 (1 marzo 1990): 689. http://dx.doi.org/10.1090/s0002-9939-1990-1028050-9.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
34

Edidin, Dan, e William Graham. "Good representations and solvable groups." Michigan Mathematical Journal 48, n. 1 (2000): 203–13. http://dx.doi.org/10.1307/mmj/1030132715.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
35

Emmanouil, Ioannis. "Solvable groups and Bass' conjecture". Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 326, n. 3 (febbraio 1998): 283–87. http://dx.doi.org/10.1016/s0764-4442(97)82981-3.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
36

OSIN, D. V. "The entropy of solvable groups". Ergodic Theory and Dynamical Systems 23, n. 3 (giugno 2003): 907–18. http://dx.doi.org/10.1017/s0143385702000937.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
37

Li, Cai Heng, e Lei Wang. "Finite REA-groups are solvable". Journal of Algebra 522 (marzo 2019): 195–217. http://dx.doi.org/10.1016/j.jalgebra.2018.11.033.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
38

Deshpande, Tanmay. "Minimal idempotents on solvable groups". Selecta Mathematica 22, n. 3 (19 marzo 2016): 1613–61. http://dx.doi.org/10.1007/s00029-016-0229-y.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
39

Wolter, T. H. "Einstein Metrics on solvable groups". Mathematische Zeitschrift 206, n. 1 (gennaio 1991): 457–71. http://dx.doi.org/10.1007/bf02571355.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
40

TANAKA, Yasuhiko. "Amalgams of quasithin solvable groups". Japanese journal of mathematics. New series 17, n. 2 (1991): 203–66. http://dx.doi.org/10.4099/math1924.17.203.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
41

Arazy, Jonathan, e Harald Upmeier. "Berezin Transform for Solvable Groups". Acta Applicandae Mathematicae 81, n. 1 (marzo 2004): 5–28. http://dx.doi.org/10.1023/b:acap.0000024192.68563.8d.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
42

HILLMAN, JONATHAN A. "2-KNOTS WITH SOLVABLE GROUPS". Journal of Knot Theory and Its Ramifications 20, n. 07 (luglio 2011): 977–94. http://dx.doi.org/10.1142/s021821651100898x.

Testo completo
Abstract (sommario):
We show that fibered 2-knots with closed fiber the Hantzsche–Wendt flat 3-manifold are not reflexive, while every fibered 2-knot with closed fiber a Nil-manifold with base orbifold S(3, 3, 3) is reflexive. We also determine when the knots are amphicheiral or invertible, and give explicit representatives for the possible meridians (up to automorphisms of the knot group which induce the identity on abelianization) for the groups of all knots in either class. This completes the TOP classification of 2-knots with torsion-free, elementary amenable knot group. In the final section, we show that the only non-trivial doubly null-concordant knots with such groups are those with the group of the 2-twist spin of the knot 946.
Gli stili APA, Harvard, Vancouver, ISO e altri
43

Isaacs, I. M., e Geoffrey R. Robinson. "Isomorphic subgroups of solvable groups". Proceedings of the American Mathematical Society 143, n. 8 (23 aprile 2015): 3371–76. http://dx.doi.org/10.1090/proc/12534.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
44

Rogers, Pat, Howard Smith e Donald Solitar. "Tarski’s problem for solvable groups". Proceedings of the American Mathematical Society 96, n. 4 (1 aprile 1986): 668. http://dx.doi.org/10.1090/s0002-9939-1986-0826500-0.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
45

Garreta, Albert, Alexei Miasnikov e Denis Ovchinnikov. "Diophantine problems in solvable groups". Bulletin of Mathematical Sciences 10, n. 01 (21 febbraio 2020): 2050005. http://dx.doi.org/10.1142/s1664360720500058.

Testo completo
Abstract (sommario):
We study the Diophantine problem (decidability of finite systems of equations) in different classes of finitely generated solvable groups (nilpotent, polycyclic, metabelian, free solvable, etc.), which satisfy some natural “non-commutativity” conditions. For each group [Formula: see text] in one of these classes, we prove that there exists a ring of algebraic integers [Formula: see text] that is interpretable in [Formula: see text] by finite systems of equations ([Formula: see text]-interpretable), and hence that the Diophantine problem in [Formula: see text] is polynomial time reducible to the Diophantine problem in [Formula: see text]. One of the major open conjectures in number theory states that the Diophantine problem in any such [Formula: see text] is undecidable. If true this would imply that the Diophantine problem in any such [Formula: see text] is also undecidable. Furthermore, we show that for many particular groups [Formula: see text] as above, the ring [Formula: see text] is isomorphic to the ring of integers [Formula: see text], so the Diophantine problem in [Formula: see text] is, indeed, undecidable. This holds, in particular, for free nilpotent or free solvable non-abelian groups, as well as for non-abelian generalized Heisenberg groups and uni-triangular groups [Formula: see text]. Then, we apply these results to non-solvable groups that contain non-virtually abelian maximal finitely generated nilpotent subgroups. For instance, we show that the Diophantine problem is undecidable in the groups [Formula: see text].
Gli stili APA, Harvard, Vancouver, ISO e altri
46

Turull, Alexandre. "Character correspondences in solvable groups". Journal of Algebra 295, n. 1 (gennaio 2006): 157–78. http://dx.doi.org/10.1016/j.jalgebra.2005.01.028.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
47

Myasnikov, A., e N. Romanovskiy. "Krull dimension of solvable groups". Journal of Algebra 324, n. 10 (novembre 2010): 2814–31. http://dx.doi.org/10.1016/j.jalgebra.2010.07.013.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
48

Isaacs, I. M. "Solvable groups contain large centralizers". Israel Journal of Mathematics 55, n. 1 (febbraio 1986): 58–64. http://dx.doi.org/10.1007/bf02772695.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
49

Navarro, Gabriel, Alexandre Turull e Thomas R. Wolf. "Block separation in solvable groups". Archiv der Mathematik 85, n. 4 (ottobre 2005): 293–96. http://dx.doi.org/10.1007/s00013-005-1407-x.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
50

Crestani, Eleonora, e Andrea Lucchini. "Normal coverings of solvable groups". Archiv der Mathematik 98, n. 1 (29 novembre 2011): 13–18. http://dx.doi.org/10.1007/s00013-011-0341-3.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!

Vai alla bibliografia