Letteratura scientifica selezionata sul tema "Solid-State closing switch"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Solid-State closing switch".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Solid-State closing switch"
ZHANG, FEI, WEN YU, CHENGFANG LI, LINA SHI e XIAOWEI SUN. "IMPROVED SOLID-STATE DBD FOR PICOSECOND SWITCH". Modern Physics Letters B 19, n. 09n10 (30 aprile 2005): 459–68. http://dx.doi.org/10.1142/s0217984905008438.
Testo completoОрлов, А. П., П. И. Голяков, Ю. В. Власов e П. Б. Репин. "Комбинированный твердотельный замыкающий ключ для коммутации сильноточного импульса". Журнал технической физики 93, n. 9 (2023): 1372. http://dx.doi.org/10.21883/jtf.2023.09.56225.136-23.
Testo completoOrlov, A. P., P. I. Golyakov, Yu V. Vlasov e P. B. Repin. "Combined Solid-State Closing Switch for High-Current Pulse Switching". Technical Physics 69, n. 7 (luglio 2024): 2074–78. http://dx.doi.org/10.1134/s106378422407034x.
Testo completoPodlesak, T. F., J. L. Carter e J. A. McMurray. "Demonstration of compact solid-state opening and closing switch utilizing GTOs in series". IEEE Transactions on Electron Devices 38, n. 4 (aprile 1991): 706–11. http://dx.doi.org/10.1109/16.75193.
Testo completoZhang, Fei, Chengfang Li e Lina Shi. "Delayed breakdown diode and its optimal design for solid state picosecond closing switch". Optical and Quantum Electronics 36, n. 15 (dicembre 2004): 1253–61. http://dx.doi.org/10.1007/s11082-004-8311-7.
Testo completoZhuang, Longyu, Kai Zhu, Junfeng Rao e Jie Zhuang. "Solid-state Marx generator based on saturable pulse transformer and fast recovery diodes". Journal of Instrumentation 18, n. 10 (1 ottobre 2023): P10036. http://dx.doi.org/10.1088/1748-0221/18/10/p10036.
Testo completoChen, Wanjun, Chao Liu, Xuefeng Tang, Lunfei Lou, Wu Cheng, Qi Zhou, Zhaoji Li e Bo Zhang. "High Peak Current MOS Gate-Triggered Thyristor With Fast Turn-On Characteristics for Solid-State Closing Switch Applications". IEEE Electron Device Letters 37, n. 2 (febbraio 2016): 205–8. http://dx.doi.org/10.1109/led.2015.2511182.
Testo completoHerrmann, Christopher S., Joseph Croman e Sergey V. Baryshev. "Computationally assessing diamond as an ultrafast pulse shaper for high-power ultrawideband radar". Frontiers in Carbon 2 (24 agosto 2023). http://dx.doi.org/10.3389/frcrb.2023.1230873.
Testo completoTesi sul tema "Solid-State closing switch"
Shahriari, Ejlal. "Commutateurs à semi-conducteurs rapides et à courant élevé pour les applications de puissance pulsée". Electronic Thesis or Diss., Pau, 2024. https://theses.hal.science/tel-04818494.
Testo completoMicro-second range high-current pulses (100s kA) are applied to generate megagauss-range magnetic fields. This high pulsed power technology has been employed in inertial fusion research, X-pinch, and high-energy-density physics. Moreover, a number of industrial applications such as magnetic pulse welding and rock fracturing require high average power, repeatability, and a reliable high-current pulse generator with a long lifespan. Hence, a fast solid-state switch development operating in the range of several hundred kA is of considerable importance.A fast high-current switch is one of the most complex components in a pulsed power generator. Historically, only gas-filled switches could operate under such extreme conditions. However, gas-filled switches have several well-known disadvantages, including low pulse repetition frequency, short lifetimes, and instability in triggering. They are also expensive to use, often requiring gas flow systems, costly gases, and recirculating chambers of gas for repetitive operation. These disadvantages have hindered the widespread adoption of pulsed power technologies.Recent advancements in semiconductor physics and technology have introduced solid-state switches into the pulsed power domain. In particular, silicon high-voltage structures triggered in impact-ionization wave mode present a promising solution for fast high-current solid-state switches (10s-100s kA and 10s kA/μs).The main goal of this thesis is to experimentally demonstrate the capability of high-voltage thyristors to switch fast-high current pulses. to accomplish this goal, two major axes of study are defined as the experimental and theoretical studies. In the experimental work, the main focus is determined based on a key limitation highlighted in the literature, i.e., the cross-sectional area of the thyristor. To eliminate this limitation several solutions have been investigated in this thesis including (i) triggering the largest commercially available thyristor, 100 mm wafer diameter with 5.2 kV static voltage breakdown. (ii) Parallel triggering of an assembly of two and four high-voltage thyristors. (iii) Series-parallel configuration in order to further increase blocking voltage and current capability of the switch simultaneously. In terms of theoretical study, the numerical simulation is conducted to shed light on the avalanche breakdown phenomena in impact-ionization switching mode
Atti di convegni sul tema "Solid-State closing switch"
Bower, S., K. Cook, R. Keyse e F. J. Jones. "0.5-mA vacuum closing switch". In Third International Conference on Solid State Lasers for Application to Inertial Confinement Fusion, a cura di W. Howard Lowdermilk. SPIE, 1999. http://dx.doi.org/10.1117/12.354231.
Testo completoWelleman, A., S. Gekenidis e R. Leutwyler. "High power reverse conducting solid state closing switch for environmental applications". In IET European Conference on European Pulsed Power 2009. Incorporating the CERN Klystron Modulator Workshop. IET, 2009. http://dx.doi.org/10.1049/cp.2009.1651.
Testo completoAllafi, Amer L., Premjeet Chahal, Ranjan Mukherjee e Hassan K. Khalil. "A Control Strategy for Eliminating Bouncing in RF MEMS Switches". In ASME 2016 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/dscc2016-9702.
Testo completoWelleman, A., e S. Gekenidis. "12.6 kA / 20 kV / 300 Hz reverse conducting solid state closing switch for De-NOx / De-SOx modulator". In 2009 IEEE Pulsed Power Conference (PPC). IEEE, 2009. http://dx.doi.org/10.1109/ppc.2009.5386219.
Testo completoHarling, Henry E. "Design of an Automatic Waterhammer Prevention System". In ASME 2011 Pressure Vessels and Piping Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/pvp2011-57405.
Testo completoYang, Bozhi, e Qiao Lin. "Latchable Phase-Change Actuators for Micro Flow Control Applications". In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-81964.
Testo completo