Tesi sul tema "Solar tower power"

Segui questo link per vedere altri tipi di pubblicazioni sul tema: Solar tower power.

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Vedi i top-26 saggi (tesi di laurea o di dottorato) per l'attività di ricerca sul tema "Solar tower power".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Vedi le tesi di molte aree scientifiche e compila una bibliografia corretta.

1

Pretorius, Johannes Petrus. "Solar Tower Power Plant Performance Characteristics". Thesis, Stellenbosch : University of Stellenbosch, 2004. http://hdl.handle.net/10019.1/16413.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Thesis (MScIng)--University of Stellenbosch, 2004.
ENGLISH ABSTRACT: This study investigates energy generation by large-scale solar tower power plants. The performance characteristics of a so-called reference plant with a 4000 m diameter glass collector roof and a 1500 m high, 160 m diameter tower are determined for a site located in South Africa. The relevant draught and conservation equations are derived, discretized and implemented in a numerical model which solves the equations using speci ed meteorological input data and determines the power delivered by the plant. The power output of a solar tower power plant over a twenty-four hour period is presented. Corresponding temperature distributions in the ground under the collector are shown. Variations in seasonal generation are evaluated and the total annual electrical output is determined. The dependency of the power output on collector diameter and tower height is illustrated, while showing that greater power production can be facilitated by optimizing the roof shape and height. The minor in uence of the tower shadow falling across the collector is evaluated, while the e ect of prevailing winds on the power generated is found to be signi cant.
AFRIKAANSE OPSOMMING: Hierdie studie ondersoek elektrisiteitsopwekking deur grootskaalse sontoringkragstasies. Die uitsetkarakteristieke van 'n sogenaamde verwysings-kragstasie met 'n 4000 m deursnee glas kollektor en 'n 1500 m hoë, 160 m deursnee toring word ondersoek vir 'n spesi eke ligging in Suid-Afrika. Die toepaslike trek- en behoudsvergelykings word afgelei, gediskretiseer en geimplementeer in 'n numeriese rekenaarmodel. Die rekenaarmodel los die betrokke vergelykings op deur gebruik te maak van gespesi seerde meteorologiese invoerdata en bepaal dan die uitset gelewer deur die kragstasie. Die uitset van 'n sontoring-kragstasie oor 'n periode van vier-en-twintig uur word getoon. Ooreenstemmende temperatuurverdelings in die grond onder die kollektor word geïllustreer. Die variasie in seisoenale elektrisiteitsopwekking word ondersoek en die totale jaarlikse elektriese uitset bepaal. Die invloed wat die kragstasie dimensies (kollektor deursnee en toring hoogte) op die uitset het, word bestudeer en resultate getoon. Daar is ook bevind dat verhoogde uitset meegebring kan word deur die vorm en hoogte van die kollektordak te optimeer. Die geringe e ek van die toringskadu op die kollektor word bespreek, terwyl bevind is dat heersende winde 'n beduidende e ek op die kragstasie uitset het.
2

Stalin, Maria Jebamalai Joseph. "Receiver Design Methodology for Solar Tower Power Plants". Thesis, KTH, Energiteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-192664.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Centrala solmottagarsystem (CRS) är på frammarsch på grund av deras höga koncentrationsfaktor och höga potential att minska kostnaderna genom att öka kapacitetsfaktorn av solkraftanläggningar med lagring. I CRS kraftanläggningar är solljuset fokuserat på mottagaren genom arrangemanget av tusentals speglar för att omvandla solstrålning till värme för att driva värmecykler. Solmottagare används för att överföra värmeflux från solen till arbetsmediet. Generellt arbetar solmottagare i driftpunkter med hög temperatur och därför genereras strålningsförluster. Vidare har solmottagaren en betydande påverkan på den totala kostnaden för kraftverket. Således har konstruktion och modellering av mottagaren en signifikant påverkan på kraftanläggningseffektivitet och kostnad. Målet med detta examensarbete är att utveckla en designmetodik för att beräkna geometrin hos solmottagaren och dess verkningsgrad. Denna designmetodik riktar sig främst till stora kraftverk i området 100 MWe, men även skalbarheten av designmetoden har studerats. Den utvecklade konstruktionsmetoden implementerades i in-house designverktyg devISEcrs som även integrerar andra moduler som modellerar solspegelfält, lagring och kraftblocket för att beräkna den totala kraftverksverkningsgraden. Designmodeller för de andra komponenterna är delvis redan implementerade, men de är modifierade och/eller utvidgade för att integrera den nya CRS mottagarmodellen. Slutligen har hela mottagarmodellen validerats genom att jämföra resultaten med testdata från litteraturen.
Central Receiver Systems (CRS) are gaining momentum because of their high concentration and high potential to reduce costs by means of increasing the capacity factor of the plant with storage. In CRS plants, sunlight is focused onto the receiver by the arrangement of thousands of mirrors to convert the solar radiation into heat to drive thermal cycles. Solar receivers are used to transfer the heat flux received from the solar field to the working fluid. Generally, solar receivers work in a high-temperature environment and are therefore subjected to different heat losses. Also, the receiver has a notable impact on the total cost of the power plant. Thus, the design and modelling of the receiver has a significant influence on efficiency and the cost of the plant. The goal of the master thesis is to develop a design methodology to calculate the geometry of the receiver and its efficiency. The design methodology is mainly aimed at large-scale power plants in the range of 100 MWe, but also the scalability of the design method has been studied. The developed receiver design method is implemented in the in-house design tool devISEcrs and also it is integrated with other modules like solar field, storage and power block to calculate the overall efficiency of the power plant. The design models for other components are partly already implemented, but they are modified and/or extended according to the requirements of CRS plants. Finally, the entire receiver design model is validated by comparing the results of test cases with the data from the literature.
3

Avapak, Sukunta. "Failure mode analysis on concentrated solar power (CSP) plants : a case study on solar tower power plant". Thesis, Queensland University of Technology, 2016. https://eprints.qut.edu.au/102375/1/Sukunta_Avapak_Thesis.pdf.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
This thesis is an investigation of critical failure modes of solar tower power system in concentrated solar power (CSP) technology. The thesis evaluated the causes and impacts of failure on the major components and apply the failure Mode and Effect Analysis (FMEA) to CSP solar tower system. This research proposed an alternative method to overcome the limitations of Risk Priority Number (RPN) from traditional FMEA. A case study applies the proposed approach to CSP solar tower system for a better prioritization of failure mode in order to reduce the risk of failures.
4

Björkman, Nils. "Heliostat Design". Thesis, KTH, Maskinkonstruktion (Inst.), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-157159.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
A heliostat is a motorized mirror used in a Solar Power Tower plant. The technology has been around since the 1970’s, and involves hundreds or thousands of heliostats reflecting the sun’s rays to the top of a high tower, where the incident solar energy is converted to heat energy, which in turn is used to drive steam turbines and produce electricity. Demonstration plants have been built in the U.S.A. and Spain, and a number of new facilities have been added since 2005. To achieve a commercial breakthrough, the technology must be made more efficient so that electricity can be produced at prices comparable with other options such as wind, photovoltaic, nuclear and coal. A critical component in the economics of the Solar Power Tower plant is the cost of the heliostat, which is estimated to account for approximately 50 % of the investment cost of the total plant. This report deals with the heliostat from a multifaceted perspective. Different design approaches are explained. First, mirror geometries, with manufacturing dimensions, for a rotation-symmetric paraboloid-shaped mirror-assembly are obtained for mirrors with different sizes with a Matlab code. Investigating wind loads are among the most important tasks in a heliostat development project, as large wind loads radically complicates the design work. A wind load calculation-method based on previous work by Sandia National Laboratories and finite element method (FEM) is used in this work to design heliostats to withstand expected wind loading. The design of the geometry and the structure to withstand wind loading is illustrated with two azimuth elevation heliostats (25 m 2 and 49 m2). Finally, a number of innovative technical solutions are suggested. These are a new mirror facet mounting technique, sliding bearings, elevation drive, and a very unique azimuth motor module, which uses steel wires as belts with an integrated brake. It is hoped that the results and designs presented in this thesis will be a good foundation for further research in the heliostat structures and heliostat controls at the Robotics lab in IISc and elsewhere. Keywords: Solar Power, Heliostat, Thermal solar power, Solar Power Tower, Central Receiver System
En heliostat är en motordriven spegel som används i tornsolkraftverk, kända som Solar Power Tower, även kallade Central Receiver system. Tekniken har funnits sedan 1970-talet och går ut på att hundratals eller tusentals heliostater speglar solstrålarna till toppen av ett högt torn, där stålningsenergin omvandlas till värmeenergi, som t.ex. kan användas till att driva ångturbiner och producera elektricitet. Demonstrationsanläggningar har byggts i bland annat USA och Spanien, och ett flertal nya installationer har tillkommit sedan år 2005. För att verkligen nå ett kommersiellt genombrott måste tekniken göras billigare så att solelen kan produceras till minst lika bra pris som andra alternativ, så som t.ex. solceller, kärnkraft och kolkraft. En kritisk komponent för tornsolkraftverkens ekonomi är kostnaden för heliostaterna, som beräknas stå för ungefär 50 % av anläggningens totala investeringskostnad. Den här rapporten avhandlar heliostaten ur ett mångfacetterat perspektiv där olika konstruktionsspår förklaras. Vidare behandlar rapporten spegelgeometrier, och en Matlab-kod som genererar tillverkningsmått för en rotationssymmetrisk paraboloidformad spegelyta finns bifogad. Att undersöka vindlaster är bland det viktigaste i ett heliostatutvecklingsprojekt, eftersom dessa är de dimensionerande lasterna för designarbetet. Här används en vindlastberäkningsmetod utgiven av Sandia National Laboratories, som kortfattat går ut på att man multiplicerar det dynamiska vindtrycket med en korrigeringsfaktor som baserats på emiriska studier av heliostatmodeller i vindtunnel. En dimensioneringsprocess för heliostater föreslås och utvecklingsgången för två Azimut-Elevation heliostater i storlek 25 m 2 resp. 49 m2 demonstreras. FEM-mjukvara nyttjas som det främsta verktyget för att dimensionera heliostatkonstruktioner som kan stå emot vindlasterna. Slutligen ges förslag på innovativa tekniska lösningar för spegelmontering, glidlager, montering av elevation-motorerna, och en unik azimut-motormodul, vilken använder stålvajrar som remmar och har en integrerad broms. Med all denna information bör Robotics Lab på IISc ha en god grund att stå på inför vidare forskning inom konstruktion och styrning av heliostater. Nyckelord: Solenergi, Heliostat, Termisk solenergi, Solar Power Tower, Tornsolkraftverk
5

Slootweg, Marcel. "Numerical performance analysis of novel solar tower receiver". Diss., University of Pretoria, 2019. http://hdl.handle.net/2263/70354.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Concern over the altering climate due to the release of anthropogenic greenhouse gases has caused a major shift in the developments of ways to minimise human impact on the climate. Solar energy is seen as one of the most promising sources to transform the energy market for low-carbon energy generation. Currently, solar power is generated via photovoltaic (PV) and concentrating solar power (CSP) technologies. The advantage of CSPs to scale up renewable energy to utility level, as well as to store thermal energy for electrical power generation when the sun is not available (after sunset or during cloudy periods) makes this technology an attractive option for sustainable clean energy. CSP development, however, is still in its infancy, and for it to be a competitive form of energy-generation technology, techno-economic developments in this field need to improve the efficiency and decrease the costs of this technology. A policy report by the European Academies’ Science Advisory Council (EASAC) (2011) indicated that central receiver (solar tower) CSP systems show the greatest margin for technological improvements (40% to 65% is estimated), and that an improvement in receiver technology could make the greatest contribution to increase efficiency. This study therefore focused on analysing the optical and thermal performance of a new proposed solar cavity molten salt receiver design for a central receiver CSP system using a numerical approach. In this study, the receiver’s performance was analysed by first selecting an existing heliostat field, Planta Solar 10 (PS-10). For the numerical analysis to reflect conditions that are as realistic as possible, numerical models for different aspects were selected and validated. For modelling the sun, the solar tracking numerical model proposed by Iqbal (1983) was selected and implemented after literature and comparison showed adequate results. The direct normal irradiation (DNI) was modelled by applying a clear sky model, with the parameterisation model C proposed by Iqbal (1983) as the chosen model. The variables in this model that were subject to temperature, and humidity values were more accurately presented by adding numerical approximations of the region’s actual weather data. The DNI model reflected realistic fluctuations. For the thermal modelling, a validation study was conducted on impingement flow heat transfer to select an appropriate Reynolds-averaged Navier-Stokes (RANS) model that would provide accurate results when conducting the thermal performance test on the receiver. The study concluded that the transitional Shear Stress Transport (SST) turbulence model performed the best. A new method was also developed and validated that allows one to not only simulate complex geometries within the Monte Carlo ray tracing environment SolTrace, but also to apply the results obtained by simulating this model as a heat source within the computational fluid dynamics (CFD) environment ANSYS Fluent. This allows SolTrace modelling to be more accurate, since models do not need to be approximated to simple geometries. It also provides an alternative for solar modelling in ANSYS Fluent. The optical analysis was conducted by first performing an analysis on the receiver aperture and studying its sensitivity on the captured flux. This was followed by analysing the optics of the proposed receiver, the flux distributions on a simplified absorber surface area, and how these distributions are altered by changing some parameters. An in-depth analysis was finally done on the absorber area by applying the aforementioned model to simulate complex geometries within SolTrace, with the results illustrating the difference of the detailed geometry on optical modelling. An alternative receiver design with improved optical features was proposed, with an initial study providing promising results. The thermal analysis was done within the CFD environment, with only a section of the absorber surface area considered, and by applying the solar flux simulated during the optical analysis as heat source within the geometry model. This allowed the model to simulate the effects of re-radiation at the surface of the absorber while simulating the heat transfer at the fluid molten salt side simultaneously. The results showed that, for the current design and requirements, the absorber surface temperature reaches impractical temperatures. Altering the design or being more lenient on the requirements has, however, shown dramatic improvements in terms of thermal performance. Sensitivity studies for both the optical and thermal analyses have shown that changes in design can dramatically improve the performance of the design, making it a possible feasible receiver design for central receiver systems.
Dissertation (MEng)--University of Pretoria, 2019.
National Research Foundation (NRF)
Mechanical and Aeronautical Engineering
MEng
Unrestricted
6

Ferruzza, Davide. "Thermocline storage for concentrated solar power : Techno-economic performance evaluation of a multi-layered single tank storage for Solar Tower Power Plant". Thesis, KTH, Kraft- och värmeteknologi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-172456.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Solar Tower Power Plants with thermal energy storage are a promising technology for dispatchable renewable energy in the near future. Storage integration makes possible to shift the electricity production to more profitable peak hours. Usually two tanks are used to store cold and hot fluids, but this means both higher related investment costs and difficulties during the operation of the variable volume tanks. Another solution can be a single tank thermocline storage in a multi-layered configuration. In such tank both latent and sensible fillers are employed to decrease the related cost by up to 30% and maintain high efficiencies.  The Master thesis hereby presented describes the modelling and implementation of a thermocline-like multi-layered single tank storage in a STPP. The research work presents a comprehensive methodology to determine under which market structures such devices can outperform the more conventional two tank storage systems. As a first step the single tank is modelled by means of differential energy conservation equations. Secondly the tank geometrical design parameters and materials are taken accordingly with the applications taken into consideration. Both the steady state and dynamic models have been implemented in an existing techno-economic tool developed in KTH, in the CSP division (DYESOPT). The results show that under current cost estimates and technical limitations the multi-layered solid PCM storage concept is a better solution when peaking operating strategies are desired, as it is the case for the two-tier South African tariff scheme. In this case the IRR of an optimal designed power plant can be decreased by 2.1%. However, if a continuous operation is considered, the technology is not always preferred over the two tank solution, yet is a cheaper alternative with optimized power plants. As a result the obtained LCOE can be decreased by 2.4%.
7

Desai, Ranjit. "Thermo-Economic Analysis of a Solar Thermal Power Plant with a Central Tower Receiver for Direct Steam Generation". Thesis, KTH, Kraft- och värmeteknologi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-131764.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Ertl, Felix. "Exergoeconomic Analysis and Benchmark of a Solar Power Tower with Open Air Receiver Technology". Thesis, KTH, Kraft- och värmeteknologi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-101320.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Stockinger, Christopher Allen. "Numerical Analysis of Airflow and Output of Solar Chimney Power Plants". Thesis, Virginia Tech, 2016. http://hdl.handle.net/10919/71670.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Computational fluid dynamics was used to simulate solar chimney power plants and investigate modeling techniques and expected energy output from the system. The solar chimney consists of three primary parts: a collector made of a transparent material such as glass, a tower made of concrete located at the center of the collector, and a turbine that is typically placed at the bottom of the tower. The collector absorbs solar radiation and heats the air below, whereby air flows inward towards the tower. As air exits at the top of the tower, more air is drawn below the collector repeating the process. The turbine converts pressure within the flow into power. The study investigated three validation cases to numerically model the system properly. Modeling the turbine as a pressure drop allows for the turbine power output to be calculated while not physically modeling the turbine. The numerical model was used to investigate air properties, such as velocity, temperature, and pressure. The results supported the claim that increasing the energy into the system increased both the velocities and temperatures. Also, increasing the turbine pressure drop decreases the velocities and increases the temperatures within the system. In addition to the numerical model, analytical models representing the vertical velocity without the turbine and the maximum power output from a specific chimney were used to investigate the effects on the flow when varying the geometry. Increasing the height of the tower increased the vertical velocity and power output, and increasing the diameter increased the power output. Dimensionless variables were used in a regression analysis to develop a predictive equation for power output. The predictive equation was tested with new simulations and was shown to be in very good agreement.
Master of Science
10

Nithyanandam, Karthik. "Investigations on Latent Thermal Energy Storage for Concentrating Solar Power". Diss., Virginia Tech, 2013. http://hdl.handle.net/10919/23189.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Thermal energy storage (TES) in a concentrating solar power (CSP) plant allows for continuous operation even during times when solar radiation is not available, thus providing a reliable output to the grid. Energy can be stored either as sensible heat or latent heat, of which latent heat storage is advantageous due to its high volumetric energy density and the high Rankine cycle efficiency owing to the isothermal operation of latent thermal energy storage (LTES) system. Storing heat in the form of latent heat of fusion of a phase change material (PCM), in addition to sensible heat, significantly increases the energy density, thus potentially reducing the storage size and cost. However, a major technical barrier to the use of latent thermal energy of PCM is the high thermal resistance to energy transfer due to the intrinsically low thermal conductivity of PCMs, which is a particularly acute constraint during the energy discharge. Secondly, for integration of TES in CSP plants, it is imperative that the cyclic exergetic efficiency be high, among other requirements, to ensure that the energy extracted from the system is at the maximum possible temperature to achieve higher cycle conversion efficiency in the power block.     The first objective is addressed through computational modeling and simulation to quantify the effectiveness of two different approaches to reduce the thermal resistance of PCM in a LTES, viz. (a) developing innovative, inexpensive and passive heat transfer devices that efficiently transfer large amount of energy between the PCM and heat transfer fluid (HTF) and (b) increase the heat transfer area of interaction between the HTF and PCM by incorporating the PCM mixture in small capsules using suitable encapsulation techniques.   The second portion of the research focuses on numerical modeling of large scale latent thermal storage systems integrated to a CSP plant with the aforementioned enhancement techniques and cascaded with more than one PCM to maximize the exergetic efficiency. Based on systematic parametric analysis on the various performance metrics of the two types of LTES, feasible operating regimes and design parameters are identified to meet the U.S. Department of Energy SunShot Initiative requirements including storage cost < $15/kWht and exergetic efficiency > 95%, for a minimum storage capacity of 14 h, in order to reduce subsidy-free levelized cost of electricity (LCE) of CSP plants from 21¢/kWh (2010 baseline) to 6¢/kWh, to be on par with the LCE associated with fossil fuel plants.
Ph. D.
11

Zongker, James D. "Life cycle assessment of Solar Updraft Tower Power Plant: EROEI and GWP as a design tool". Thesis, Wichita State University, 2013. http://hdl.handle.net/10057/10652.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
The Solar Updraft Tower Power Plant (SUTPP) is a simple proven concept capable of producing power from sunlight with relatively little complexity and few moving parts. Unfortunately, it requires a large investment to build huge greenhouse-like collector to feed heated air into a very tall chimney, where it rises due to natural convection and spins turbo-generators that provide electric power. Substantial research has gone into understanding its physics, modeling its performance, and optimizing its fundamental design aspects. Economic analyses indicate it is feasible, proposals have been made, and the proposal for the first commercial plant has been floated. This thesis considers a few well researched configurations, and examines their environmental impacts (via a Life Cycle Assessment) of Global Warming Potential (GWP), and Energy Returned On Energy Invested (EROEI), including some of the practical aspects of building and operating a SUTPP. The best glass SUTPP studied had an EROEI of 7, comparable to photovoltaic power generation. Use of ethylene tetrafluoroethylene (ETFE) raised that to 14, approaching wind power (18), and permitted an EROEI of 10 for an airflow regulated SUTPP capable of baseload power or of shifting some generation to peak demand times. The collector was the largest contributor to life cycle impacts. Sites with risk of damaging hail should be avoided. Glass and ETFE offer favorable combinations of durability and recyclability. Evidence is cited suggesting the collector needs a cleaning system. Design strategies to facilitate cleaning and employ ETFE are discussed. Areas requiring further research have been identified and recommendations have been provided, along with the most promising SUTPP configurations based upon this research.
Thesis (M.S.)--Wichita State University, College of Engineering, Dept. of Mechanical Engineering
12

Strand, Anna. "Optimization of energy dispatch in concentrated solar power systems : Design of dispatch algorithm in concentrated solar power tower system with thermal energy storage for maximized operational revenue". Thesis, KTH, Kraft- och värmeteknologi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-264410.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Concentrated solar power (CSP) is a fast-growing technology for electricity production. With mirrors (heliostats) irradiation of the sun is concentrated onto a receiver run through by a heat transfer fluid (HTF). The fluid by that reaches high temperatures and is used to drive a steam turbine for electricity production. A CSP power plant is most often coupled with an energy storage unit, where the HTF is stored before it is dispatched and used to generate electricity. Electricity is most often sold at an open market with a fluctuating spot-prices. It is therefore of high importance to generate and sell the electricity at the highest paid hours, increasingly important also since the governmental support mechanisms aimed to support renewable energy production is faded out since the technology is starting to be seen as mature enough to compete by itself on the market. A solar power plant thus has an operational protocol determining when energy is dispatched, and electricity is sold. These protocols are often pre-defined which means an optimal production is not achieved since irradiation and electricity selling price vary. In this master thesis, an optimization algorithm for electricity sales is designed (in MATLAB). The optimization algorithm is designed by for a given timeframe solve an optimization problem where the objective is maximized revenue from electricity sales from the solar power plant. The function takes into consideration hourly varying electricity spot price, hourly varying solar field efficiency, energy flows in the solar power plant, start-up costs (from on to off) plus conditions for the logic governing the operational modes. Two regular pre-defined protocols were designed to be able to compare performance in a solar power plant with the optimized dispatch protocol. These three operational protocols were evaluated in three different markets; one with fluctuating spot price, one regulated market of three fixed price levels and one in spot market but with zero-prices during sunny hours. It was found that the optimized dispatch protocol gave both bigger electricity production and revenue in all markets, but with biggest differences in the spot markets. To evaluate in what type of powerplant the optimizer performs best, a parametric analysis was made where size of storage and power block, the time-horizon of optimizer and the cost of start-up were varied. For size of storage and power block it was found that revenue increased with increased size, but only up to the level where the optimizer can dispatch at optimal hours. After that there is no increase in revenue. Increased time horizon gives increased revenue since it then has more information. With a 24-hour time horizon, morning price-peaks will be missed for example. To change start-up costs makes the power plant less flexible and with fewer cycles, without affect income much.
Koncentrerad solkraft (CSP) är en snabbt växande teknologi för elektricitets-produktion. Med speglar (heliostater) koncentreras solstrålar på en mottagare som genomflödas av en värmetransporteringsvätska. Denna uppnår därmed höga temperaturer vilket används för att driva en ångturbin för att generera el. Ett CSP kraftverk är oftast kopplat till en energilagringstank, där värmelagringsvätskan lagras innan den används för att generera el. El säljs i de flesta fall på en öppen elmarknad, där spotpriset fluktuerar. Det är därför av stor vikt att generera elen och sälja den vid de timmar med högst elpris, vilket också är av ökande betydelse då supportmekanismerna för att finansiellt stödja förnybar energiproduktion används i allt mindre grad för denna teknologi då den börjar anses mogen att konkurrera utan. Ett solkraftverk har således ett driftsprotokoll som bestämmer när el ska genereras. Dessa protokoll är oftast förutbestämda, vilket innebär att en optimal produktion inte fås då exempelvis elspotpriset och solinstrålningen varierar. I detta examensarbete har en optimeringsalgoritm för elförsäljning designats (i MATLAB). Optimeringsscriptet är designat genom att för en given tidsperiod lösa ett optimeringsproblem där objektivet är maximerad vinst från såld elektricitet från solkraftverket. Funktionen tar hänsyn till timvist varierande elpris, timvist varierande solfältseffektivitet, energiflöden i solkraftverket, kostnader för uppstart (on till off) samt villkor för att logiskt styra de olika driftlägena. För att jämföra prestanda hos ett solkraftverk med det optimerade driftsprotokollet skapades även två traditionella förutbestämda driftprotokoll. Dessa tre driftsstrategier utvärderades i tre olika marknader, en med ett varierande el-spotpris, en i en reglerad elmarknad med tre prisnivåer och en i en marknad med spotpris men noll-pris under de soliga timmarna. Det fanns att det optimerade driftsprotokollet gav både större elproduktion och högre vinst i alla marknader, men störst skillnad fanns i de öppna spotprismarknaderna. För att undersöka i vilket slags kraftverk som protokollet levererar mest förbättring i gjordes en parametrisk analys där storlek på lagringstank och generator varierades, samt optimerarens tidshorisont och kostnad för uppstart. För lagringstank och generator fanns att vinst ökar med ökande storlek upp tills den storlek optimeraren har möjlighet att fördela produktion på dyrast timmar. Ökande storlek efter det ger inte ökad vinst. Ökande tidshorisont ger ökande vinst eftersom optimeraren då har mer information. Att ändra uppstartkostnaden gör att solkraftverket uppträder mindre flexibelt och har färre cykler, dock utan så stor påverkan på inkomst.
13

Gopalakrishna, Sandeep. "Investigation of solar applicable gas cycles". Thesis, Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/51734.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
This thesis presents the thermodynamic and economic assessment of gas power cycles for 100 MW solar thermal power generation systems. A gas power cycle for solar power generation is a totally different technology from the current state of the art solar power generation systems. As a result, this thesis provides an assessment of the solar power generation systems with gas power cycles and provides guidance in the selection of design and operating parameters for gas power cycle based solar power generation system. The gas power cycle based power generation systems are assessed by means of thermodynamic and economic models developed and simulated using commercial thermodynamic analysis software. The gas cycle based power generation systems considered in this study are Cold Gas Turbine, High Temperature Solar Gas Turbine and Lorentz Cycle Gas Turbine. The system models are assessed for their thermodynamic performance using theory based turbo-machinery models with practical performance and loss data. In addition, extensive cost models have been developed for assessing the economic performance of the system models to determine their practical feasibility. The results from this study indicate that the most economical power generation system is the HTSGT system for a high peak cycle temperature utilizing the central receiver power tower solar collector system. The LCGT system also has a comparable performance at the same operating temperature. The CGT system assessed for operating with parabolic trough solar collector system at a lower peak cycle temperature had an inferior performance compared to the current state of the art technology for the power generation using parabolic troughs.
14

Rule, Matt. "Feasibility of a grid connected solar power tower with molten salt storage plant for Kalgoorlie-Boulder, Western Australia". Thesis, Rule, Matt (2016) Feasibility of a grid connected solar power tower with molten salt storage plant for Kalgoorlie-Boulder, Western Australia. Masters by Coursework thesis, Murdoch University, 2016. https://researchrepository.murdoch.edu.au/id/eprint/35884/.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Solar power tower (SPT) plants with thermal energy storage (TES) provide great opportunities on the utility-scale; becoming a viable option for areas with moderate to high direct solar availability. The absence of commercial SPTs in Australia, together with the need to increase renewable energy capacity, raises the importance of proving it viable and beneficial. There is an apparent research gap, specifically, into the feasibility of a grid connected SPT with molten salt storage system for the Goldfields city, which this research explores. In this dissertation, solar power tower with storage systems are reviewed to facilitate the research. The System Advisor Model (SAM) base case 104 MW SPT, with the performance advancement that (14 hours) molten salt storage adds, introduces the capability of replacing conventional power plants, generate reliable base load or demand following electricity into the SWIS power grid and create jobs. Kalgoorlie-Boulder, with its excellent solar resource, infrastructure, local economy and SWIS grid connection enables this solar thermal power system to be considered appropriate. The research methodology presents the procedure and limitations in the modeling of the system, and the sensitivity analysis. The estimated performance of certain SPT with molten salt TES designs (similar to Crescent Dunes SPT plant) show that it could generate all of the city’s electricity demand (excluding the mine sites), and still feed in electricity to the grid. The benefits from grid connection come in the form of capacity credits and renewable energy certificates. These are required to form a PPA, as the estimated LCOE is above the fossil fuel range (although in line with current SPTs with storage). Taking advantage of Government policies and incentives from the gird, together with the system costs (explicitly, heliostat field) predicted reduction, the gap will close, improving economic viability and enhancing its feasibility.
15

Blampain, Emil. "Development of an integrated tool to design, estimate cost and calculate annual performances of a solar power tower". Thesis, KTH, Kraft- och värmeteknologi, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-226168.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
This Master Thesis consisted in realizing a tool able to design, estimate the cost and calculate annual yields of a molten salt solar power tower. Such tool was made for a company providing CSP equipment and plant solutions for engineering, engineering and procurement or also EPC of a solar power tower. The Company wishes to propose competitive plant configurations presenting a good trade-off between cost and revenues. The Company can oversee the EPC of a whole power plant or/and supply some components of the molten salt cycle and of the water/steam cycle. The tool models a large scale solar power tower with a thermal energy storage system on EBSILON®Professional 12.04, a thermodynamic software.   When launching a simulation, the tool sizes the components of the molten salt cycle (design phase) according to user’s inputs, the other components have their characteristics based on a reference project. Depending on the size of the components, the total cost is determined and the revenues over a year of operation are calculated (annual performance). When performing several simulations with different configurations, the Company can judge about the economic viability of plant configurations by comparing their LCOEs and NPVs.   The present document describes the result of the Master Thesis, that is to say the tool itself, what it contains and how it works. The methodology adopted to design the components is presented in depth, the way costs were calculated is exposed. The document explains the annual performance calculations and the simple operation strategy implemented. Finally, a technical and cost validation was carried out but it would require some further work to be complete. The design and cost calculations are performed in few seconds, the annual calculations take around 2-3h.   One main contribution of the Master Thesis is to show that designing, estimating costs and calculating annual performances is feasible in a single tool operating at a high level of detail. Using the tool during a solar power tower project could considerably facilitate the current process in place at the Company. It can also allow to compare an important number of configurations to determine a good techno-economic solution.
Denna uppsats bestod i att genomföra ett verktyg som kan utforma, beräkna kostnaden och beräkna årliga avkastningar på ett smält salt soltorn. Ett sådant verktyg gjordes för ett företag inom soltornsteknik, upphandling och konstruktion (SUK) som vill föreslå konkurrenskraftiga anläggningskonfigurationer som presenterar en bra avvägning mellan kostnad och intäkter. Företaget, samtidigt som det övervakar SUK för en hel kraftverk, levererar det också vissa komponenter i den smälta saltcykeln. Verktyget modellerar ett storskaligt soltorn med ett värmeenergilagringssystem på EBSILON®Professional 12.04, en termodynamisk programvara.   När en simulering startas, ritar verktyget komponenterna i den smälta saltcykeln (designfas) enligt användarens inmatningar, de andra komponenterna är baserade på ett referensprojekt. Beroende på komponenternas storlek bestäms den totala kostnaden och intäkterna över ett verksamhetsår beräknas (årlig prestation). När flera simuleringar görs med olika konfigurationer kan företaget bedöma sin ekonomiska lönsamhet genom att jämföra sina LCOE och NPV.   Det här dokumentet beskriver resultatet av masterprojektet, det vill säga själva verktyget, vad det innehåller och hur det fungerar. Den metod som antagits för att designa komponenterna presenteras grundligt samt hur kostnaderna beräknades. Dokumentet förklarar de årliga prestationsberäkningarna och den enkla operationsstrategin som implementerats. Slutligen genomfördes en teknisk och kostnadsvalidering, men det skulle kräva ytterligare insats för att göra arbetet fullständigt. Konstruktionen och kostnadsberäkningarna utförs på få sekunder, de årliga beräkningarna tar cirka 2-3 timmar.   Ett huvudbidrag av examensarbetet är att visa att utformning, uppskattning av kostnader och beräkning av årliga prestanda är möjlig i ett enda verktyg som arbetar på en detaljrik nivå. Att använda verktyget under ett soltornsprojekt kan betydligt underlätta den nuvarande processen på plats hos företaget. Det kan också göra det möjligt att jämföra ett viktigt antal konfigurationer för att bestämma en bra tekno-ekonomisk lösning.
16

Ellakany, Farid. "Enhancing the Thermo-Economic Performance of a Direct Steam Generation Solar Tower Power Plant through the Implementation of Steam Flow Control Strategies for Flexible Operation". Thesis, KTH, Kraft- och värmeteknologi, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-150112.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Above 90% of the current installed concentrating solar power plants are based on conventional steam-turbine cycles. The operation of steam turbines in these plants is distinctive when compared to traditional base-load power plants. The reason goes back to the intermittent nature of solar power which, in the absence of thermal energy storage or a back-up combustion boiler, forces plant operators to shut down the turbines during night time or at times of low solar radiation. Furthermore, such intermittency often leads to undesirable off-design turbine operating circumstances, either by load variations or changes on live-steam conditions.The present study examines the influence of implementing two operating strategies dealing with steam flow control as a function of incoming solar power for enhancing the thermo-economic performance of a direct steam generation solar tower power plant. The first one consists of a simultaneous high pressure turbine stage- and feed-water preheater bypass. This strategy is used during periods in which the solar radiation is higher than nominal. On these occasions, the plant is capable of generating a larger flow of steam, which allows for an increase in the power production when inserting the additional steam in the turbine bypass. On the other hand, the second operating strategy consists of using an additional feed-water preheater when the power from the field is lower than nominal. In this way, the feed water can reach a higher temperature prior entering the boiler, which is not only beneficial during times of cloud-passages, but also during the start-up process.A dynamic model of a direct steam generation solar tower power plant has been developed following design and operation specifications of an existing reference plant. The two proposed strategies were implemented to the reference model, then a whole year worth simulation was performed for both the reference and the modified models. Lastly, the thermodynamic and economic performance of both systems was measured for the purpose of comparison, by means of using KTH in-house tool DYESOPT. Results show that the implementation of the proposed strategies can enhance the economic viability of the systems by yielding a reduction of 8.7% on the levelized cost of electricity, mainly due to allowing achieving a 12% increase in the net electricity production.
17

Borges, Henry Alexandre Lopes. "Aplicação e simulação de óticas SMS a concentradores solares do tipo torre com abordagem beam-down". Master's thesis, Universidade de Évora, 2020. http://hdl.handle.net/10174/28566.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
As tecnologias do tipo Central Tower Receiver (CTR) são hoje já bastante utilizadas na produção de eletricidade por via térmica, com fatores de concentração acima de 1000X (1X = 1kW/m2). Em particular, a abordagem beam-down releva-se muito promissora pela possibilidade de colocação da cavidade absorvedora perto do plano horizontal, facilitando a operação da mesma. Neste trabalho será feita uma análise deste tipo de soluções e, em particular, a aplicação de concentradores do tipo SMS a óticas terciárias para a obtenção de elevados níveis de concentração incluindo gaps entre os espelhos para evitar pontes térmicas. Serão realizados análises comparativos entre soluções correntes e as novas abor-dagens, através de uma metodologia de comparação dos parâmetros óticos como a efici-ência ótica, CAP, e curvas de transmissão angular de cada sistema. Da análise desses resultados, comprova-se ser possível atingir eficiências óticas de 68% e perdas de efici-ência de 4% incluindo gap a óticas terciárias; Abstract: Application and simulation of SMS optics to tower-type solar concen-trators with beam-down approach. Central Tower Receiver (CTR) technologies are now widely used in the production of electricity by thermal means, with concentration factors above 1000X (1X = 1kW/m2). In particular, the beam-down approach is very promising due to the possibility of placing the absorbing cavity close to the horizontal plane, facilitating its operation. In this work will be made an analysis of this type of solutions and, in particular, the application of concentrators type SMS to tertiary optics to obtain high levels of concentration including gaps between mirrors to avoid thermal short-circuits. Comparative studies will be carried out between current solutions and new approaches, through a methodology for comparing optical parameters such as optical efficiency, CAP, and angular transmission curves of each system. From the analysis of these results, it is proved that it is possible to achieve optical efficiencies of 68% and efficiency losses of 4% including a gap at tertiary optics.
18

Alkeaid, Majed Mohammed G. "Study of NEOM city renewable energy mix and balance problem". Thesis, KTH, Elkraftteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-235535.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
It is important for NEOM management in the contemporary world to put in place NEOM projects using the available resources. The region in which the NEOM project is spacious and vast with conditions suited to generate energy from solar and wind. The NEOM projectis expected to be set up in the very resourceful state of Saudi Arabia. The purpose of the study is to assist in setting up a sustainable city through the exploitation of solar and wind energy. The aim of the study was to assist in the generation of more than 10 GW renewable energy to replace approximately 80,000 barrels of fossil energy. The problem of coming up with renewable and sustainable energy from the unexploited sources is addressed. The renewable city is expected to be a technological hub based on Green Energy with 100% renewable energy, which is correspond to 72:4GW. Freiburg and Masdar as renewable cities are used as case studies in the research. NEOM power generation capacity is capable to cover Saudi Arabia power generation capacity (approximately 71GW), which is more than enough for a city. The study reveals that the total power generation from wind farms, tidal farms, solar stations, and solar power tower stations are 9:1373GW, 4:76GW, 57:398GW and 1:11GW respectively. Saudi Arabia has plans to set up 16 nuclear plants (17 GW each) for energy purposes (total of 272 GW), which will be part of Saudi Arabia national grid and will be more than enough to cover NEOM electricity demand in case NEOM does not reach demand capacity. In case NEOM energy does not meet the demand, electricity generation from 16 Nuclearpower plants generating 17GW each, and 6 Natural underground batteries with a capacity of 120MW each are recommended. The study results can be applied in NEOM Institute of Science and Technology for further research on renewable energy. The findings can also be used for research extension of HVDC transmission lines between NEOM and Saudi Arabia main grid, Egypt, and Jordan.
Det är viktigt för NEOM projektets ledning att planera och införa projektet med hjälp av förnybara energiresurser på plats. Regionen är rymligt och stort och är en lämplig plats för att kunna generera tillräcklig med energi från sol och vind för energiförsörjning av området. Syftet med studien är att studera en pågående planering och byggnation av en hållbar stad med upp till 10 GW förnybar energi som motsvarar cirka 80 000 fat fossil bränsle. Problem och utmaningar för att försörja en hel stad med förnybara energiresurser kommer att diskuteras. Den förnybara staden förväntas vara ett föredöme för 100% förnybar energi, vilket i kapacitetssammanhang motsvarar 72:4GW, vilket är mer tillräckligt än behovet för NEOM staden. Freiburg och Masdar städer används som fallstudier i examensarbetet. NEOMs kraftproduktionskapacitet kan täcka behovet av hela landet som uppgår till 71GW. Studien visar att den totala kraftproduktionskapaciteten från olika förnybara energiresurser såsom vindkraftparker, tidvattenanläggningar, solcellkraftverk och soltornskraftverk med en kapacitet av 9:1373GW,4:76GW, 57:398GW och 1:11GW respektive kan uppgå till 72:4GW. Saudiarabien har planer på att skaffa 16 kärnkraftverk (17GW vardera) med en total kapacitet på 272GW som kommer att ingå i Saudiarabiens nationella satsningar för framtidens elproduktion och det kan täcka elbehovet om NEOM inte når efterfrågekapaciteten. Utöver ovan har studien föreslagit 6 underjordiska batterier med en kapacitet på 120MW per batteri. Studieresultaten kan användas för kompetensuppbyggnad och vidare forskning om förnybara energiresurser för NEOM Institute of Science and Technology. Resultaten kan också användas för teknikutveckling och forskning inom HVDC- överföringsledningar mellan NEOM, Saudiarabiens huvudnät, Egypten och Jordanien.
19

Moulana, Mustapha. "Modélisation et analyse du flux collecté par une centrale solaire à tour dans une atmosphère réaliste : couplage centrale solaire - atmosphère dans un code de transfert radiatif Monte-Carlo". Electronic Thesis or Diss., Université de Lille (2018-2021), 2021. http://www.theses.fr/2021LILUR015.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Le flux collecté par le récepteur d’une centrale solaire thermique à tour est traditionnellement estimé en ne considérant que le rayonnement solaire direct réfléchi par le champ d’héliostats. Nous proposons dans cette thèse le développement d’un code de transfert radiatif atmosphérique amélioré pour non seulement considérer la contribution du rayonnement solaire direct réfléchi par les héliostats, mais aussi toutes les autres contributions incluant le rayonnement solaire diffus par l'atmosphère, réfléchi par le sol, etc. Pour cela, le code de transfert radiatif atmosphérique Monte-Carlo SMART-G est choisi et est développé pour y incorporer une centrale solaire à tour dans une atmosphère réaliste. La méthode pour la création de ce nouvel outil est décrite et validée. L’utilisation de ce nouvel outil se révèle être essentielle pour une correcte estimation du flux collecté par une centrale solaire à tour localisée dans un milieu désertique et une première analyse des gains environnementaux est présentée pour le flux collecté annuellement pour la centrale PS10 placé à Ouarzazate au Maroc
The flux collected by the receiver of a solar tower plant is traditionally estimated by the only consideration of the direct solar radiation reflected by the heliostat field. In this thesis, we propose the development of a new version of an atmospheric radiative transfer code to consider not only the flux from direct solar radiation reflected by heliostats but also all the other contributions as the scattered solar radiation, the solar radiation reflected by the ground, on so on. To perform that, the Monte-Carlo atmospheric radiative transfer code SMART-G is chosen and developed to allow the incorporation of a solar tower plant in a realistic atmosphere. The method to create this new tool is completely described and validated. The use of this new tool has proved to be essential for a correct estimate of the flux collected by a solar tower plant located in a desert. An first analysis of the environnemental gain is realized for the annually collected flux of the PS10 solar tower plant, placed in Ouarzazate in Maroc
20

Tiddens, Arne [Verfasser], Bernhard [Akademischer Betreuer] Hoffschmidt e Andreas [Akademischer Betreuer] Kemna. "Measurement methods for investigating the air return ratio of open volumetric receivers at solar power towers / Arne Tiddens ; Bernhard Hoffschmidt, Andreas Kemna". Aachen : Universitätsbibliothek der RWTH Aachen, 2017. http://d-nb.info/1162498528/34.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
21

Trella, Fredrik, e Nils Paakkonen. "Development of a Cost-Effective, Reliable and Versatile Monitoring System for Solar Power Installations in Developing Countries : A Minor Field Study as a Master Thesis of the Master Programme in Engineering Physics, Electrical Engineering". Thesis, Uppsala universitet, Fasta tillståndets elektronik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-302815.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
This report is the result of a conducted Minor Field Study (MFS), to the greatestextent funded by the Swedish International Development Cooperation Agency(SIDA), in an attempt to design a system for evaluating smaller solar power systems indeveloping countries. The study was to the greater part conducted in Nairobi, Kenyain close collaboration with the University of Nairobi. The aim was to develop asystem that would use easily available components and keep the costs to a minimum,yet deliver adequate performance. The system would measure certain parameters of asolar power system and also relevant environmental data in order to evaluate theperformance of the system. Due to the specific competence of the collaboratinggroup at the University of Nairobi, a Kinetis Freescale K64-microcontroller with anARM-Cortex processor was selected as the core of the design. Components wereselected, schematics were drawn, a circuit board was designed and manufactured andsoftware was written. After 12 weeks a somewhat satisfying proof-of-concept wasreached at the end of the field study in Kenya. The project however proved howdifficult it is to go from first idea to a functional proof-of-concept during a limitedtimeframe, and also in an East-African country. The final proof-of-concept was testedat Mpala Research Centre in Kenya and despite containing some flaws proved that itwould indeed be possible to design a working system on the principles discussed inthis report. The system is open-source, so anyone may use and modify it.
22

Šimonová, Lucie. "Distribuční soustava Kypru - realizovatelnost obnovitelných zdrojů a přenos energie". Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2011. http://www.nusl.cz/ntk/nusl-219218.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Until a few decades ago few people could imagine that the photovoltaic, solar thermal and other power based on renewable resources, will become a reality. Today people from all over the world on the contrary try at full blast derive benefit from of all possible available source. Using sunlight as a source of energy is first enforced only for small devices such as calculators for charging the battery, but now we are able to produced energy from the sun to supply people around the world. Of course it is not possible supply consumer sector plus firm only from performances renewable power supply. Therefore endeavour is derive benefit from classical energy production at the same time with others power supply. The basic components of photovoltaic and solar thermal power are panels. The panels are made of different materials in different shapes and sizes. During production, the resulting effect looks in addition to costs associated with production. For photovoltaic and solar thermal power plant requires sufficient sunlight. The sunshine has biggest intensity on south of ours planets. Therefore endeavour is build lump these power station just in stand with bigger intensity sunshine. One of them is just Cyprus, too.
23

Rascon, Danyela Samaniego. "Occupational and safety issues of workers in central tower solar energy facilities". Doctoral thesis, 2017. http://hdl.handle.net/10316/42964.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Tese de doutoramento em Sistemas Sustentáveis de Energia, apresentada ao Departamento de Mecânica da Faculdade de Ciências e Tecnologia da Universidade de Coimbra
Due to the scarcity of fossil fuels and the environmental problems arising from its use and exploitation, countries are opting for developing technologies based on renewable sources as alternatives to satisfy the growing energy demand. Among the renewable energy technologies, in some countries solar energy seems to be a promising solution to meet the energy supply due to its abundance and non-polluting character. Based on solar energy industrial applications, the Concentrated Solar Power Systems (CSP) option is growing both in number of solar power plants and installed capacity, impacting also substantially in job generation. Among the CSP technologies that are dominating the market, are central receiver systems (CRS). CRS requires the use of heliostats to reflect solar radiation in its surfaces in order to concentrate it in a receiver. This process results in a considerable amount of concentrated solar radiation (visible light, infrared and ultraviolet radiation) inside and in the neighborhood of the installations. Usually solar power plants are located in sunny environments due to requirements for power generation. Meanwhile, as the ozone layer damage has been exceeding its natural restoration, a growing level of UV radiation reaches the surface of the Earth where solar industry working force will be facing new risks. Some previous studies have provided information about exposure to high levels of solar radiation, indicating that it may negatively influence the biological system. Working population performing activities outdoors and exposed to solar radiation may meet health impairments on skin, eyes and nervous system. The excess of light due to both the reflection of the sun light on the heliostats' surface and the brightness of the receiver is considered as a possible situation of risk for the eyes. The OSHA defined dehydration, heat exhaustion, heat stroke as consequences of exposures to heat. These impairments on health may also negatively impact the performance of the workers and, simultaneously, decrease their productivity. This work aims to contribute with crucial information about the environmental conditions in solar energy facilities. In addition, the exposures to solar radiation in a case study, a CRS facility in an experimental solar facility in Mexico, are assessed. The research briefly outlines the relation between solar effects on eyes, skin and nervous system subjected to momentary and cumulative exposures. It also addresses the Methodology and safety doses. An assessment of eye, skin and level of heat stress on working population, based on solar radiation measurements was carried and results are presented and discussed. The main objective is to contribute with information directed to environmental scientists, standard developers and the solar industry. This way it will be possible to improve/develop procedures directed toward the occupational health and safety within solar energy industry.
Devido aos problemas ambientais decorrentes do uso e exploração de combustíveis fósseis, os países têm optado pelo desenvolvimento de tecnologias baseadas em fontes renováveis como alternativas para alcançar a crescente procura de energia. Entre as tecnologias de energia renovável, em alguns países, a energia solar parece ser uma solução promissora para garantir o fornecimento de energia devido à sua abundância e ao seu carácter não poluente. Com base em aplicações industriais de energia solar, os sistemas de energia solar concentrada (CSP, siglas em inglês) estão a crescer em número de centrais de energia solar e em capacidade instalada, tendo um impacto substancial na criação de empregos. Entre as tecnologias CSP que dominam o mercado, está a tecnologia denominada, sistemas recetores centrais (siglas em inglês, CRS). O CRS requer o uso de helióstatos para refletir a radiação solar nas suas superfícies, de modo a concentrá-la num preceptor. Este processo resulta numa quantidade considerável de radiação solar concentrada (luz visível, infravermelho e ultravioleta) dentro e nas imediações das instalações. Normalmente, as centrais de energia solar estão localizadas em ambientes ensolarados devido aos requisitos de geração de energia. Entretanto, como os danos da camada de ozono excedem a sua restauração natural, um nível crescente de radiação UV atinge a superfície da Terra onde o público trabalhador da indústria solar enfrentará novos riscos. Alguns estudos anteriores forneceram informações sobre a exposição a altos níveis de radiação solar. Indicando que estes podem influenciar negativamente o sistema biológico. A população trabalhadora que realiza atividades ao ar livre, expostas tais quantidades elevadas de radiação solar, pode enfrentar deficiências de saúde na pele, nos olhos e no sistema nervoso. O excesso de luz devido ao reflexo da luz do sol sobre a superfície dos helióstatos e o brilho do recetor são considerados possíveis situações de risco para o olho. A OSHA definiu a desidratação, a exaustão por calor, e a insolação como consequências das exposições ao calor. Estes efeitos nefastos na saúde também podem afetar negativamente o desempenho do trabalhador, diminuindo a sua produtividade. Este trabalho tem como objetivo contribuir com informações sobre as condições do meio ambiente nas instalações de energia solar. Como exemplo de aplicação, as condições de exposição à radiação solar em um CRS são apresentadas e avaliadas num caso de estudo realizado numa instalação solar experimental no México. Neste trabalho descreve-se, brevemente, a relação de efeitos solares nos olhos, pele, e sistema nervoso quando submetidos a exposições momentâneas e cumulativas. Apresenta-se a metodologia de estudo e as doses de segurança. É prevista uma avaliação do olho, pele e nível de estresse térmico na população trabalhadora, com base em medições de radiação solar. Os resultados serão apresentados e discutidos na seção final da análise do caso de estudo. O presente trabalho tem como principal objetivo contribuir com informações dirigidas a cientistas ambientais, criadores de normas, e à indústria solar, para que se possam melhorar/desenvolver procedimentos direcionados para a saúde e segurança ocupacional no setor de energia solar.
CONACYT (Concejo Nacional de Ciencia y Tecnología) PhD grant 218563 No.314149 Mexican National Council for Science and technology
LAETA (Associated Laboratory for Energy, Transports and Aeronautics) Project PestE/EME/LA0022/201
24

Ashith, Shyam R. Babu. "Design and Development of a Three-degree-of-freedom Parallel Manipulator to Track the Sun for Concentrated Solar Power Towers". Thesis, 2017. http://etd.iisc.ac.in/handle/2005/3561.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
In concentrated solar power (CSP) stations, large arrays of mirrors which are capable of changing its orientation are used to reflect the incident solar energy to a stationary receiver kept at a distance. Such mirrors are often called as heliostats. The receiver contains a heat absorbing medium like molten salt. By absorbing the thermal energy reflected from thousands of heliostats, the temperature would reach around 6000C and the heat can be used in thermal power plants to generate steam and thus run a turbine to produce electricity. One of the biggest advantages of CSP over conventional energy harvesting from Sun is that it can generate electricity during night for long hours of time from the thermal energy stored during daytime. This eliminates the usage of batteries or any other energy storing methods. The conversion efficiency is also high in CSP due to the high temperature achieved. With prior knowledge of the station coordinates, viz., the latitude and longitude, the day of the year and time, the direction or the path of sun can be fully determined. Typically, the sun's motion is tracked by the azimuth-elevation (Az-El) or the target-aligned configuration heliostats. In both these approaches, the mirror needs to be moved about two axes independently using two actuators in series with the mirror effectively mounted at a single point at the centre. This arrangement causes the mirror to deform in presence of gusty winds in a solar field which results in loss of pointing accuracy. Typically a beam error of less than 2-3 mrad is desirable in a large solar field and this value also includes other sources of loss of pointing accuracy like gravity and wind loading. In order to prevent this, a rigid support frame is required for each of the heliostats. In this work, two three degree-of-freedom parallel manipulators, viz., the 3-UPU wrist and 3-RPS, have been proposed to track the sun in central receiver systems. The main reasons for choosing a parallel manipulator as heliostat are its desirable characteristics like large load carrying capacity, high accuracy in positioning the mirror and easy to obtain the inverse kinematics and convenient for real time control. The proposed parallel manipulators support the load of the mirror, structure and wind loading at three points resulting in less deflection and thus a much larger mirror can be moved with the required tracking accuracy and without increasing the weight of the support structure. The algorithm for sun tracking is developed, extensive simulation study with respect to actuations required, variation of joint angles, spillage loss and leg intersection has been carried out. Using FEA, it is shown that for same sized mirror, wind loading of 22 m/s and maximum deflection requirement (2 mrad), the weight of the support structure is between 15% and 60% less with the parallel manipulators when compared to azimuth-elevation or the target-aligned configurations. A comprehensive study on stroke minimization of prismatic joints is carried out. It is found that a stroke of 700 mm is required for a 2 m x 2 m heliostat at Bangalore when the farthest heliostat is at a distance of 300 m from the tower. Although, there is an extra motor required to track the sun, the 3-RPS manipulator is better than the conventional methods if the mirror area per actuator criteria is taken into consideration. Prototypes of the Az-El and 3-RPS heliostats were made with a mirror size of 1 m x 1 m. A PID controller implemented using MATLAB-Simulink and a low cost, custom made motor driver circuit is used to control the motion of the 3-RPS heliostat. The algorithm developed is tested on the prototype by tracking a point marked on the wall of the lab space and is found to have a tracking error of only 7.1 mrad. Finally, the actual sun tracking is carried out on the roof of a building reflecting the sun-light to a wall situated 6.72 m above and a distance of 15.87 m from the heliostats. The images are captured at various instances of time from 11:30 a.m. to 3:30 p.m. on October 15th and November 10th, 2016, tracking errors are quantified and it is demonstrated that the proposed 3-RPS parallel manipulator can indeed work as a heliostat in concentrated solar power plants.
25

Ashith, Shyam R. Babu. "Design and Development of a Three-degree-of-freedom Parallel Manipulator to Track the Sun for Concentrated Solar Power Towers". Thesis, 2017. http://etd.iisc.ernet.in/2005/3561.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
In concentrated solar power (CSP) stations, large arrays of mirrors which are capable of changing its orientation are used to reflect the incident solar energy to a stationary receiver kept at a distance. Such mirrors are often called as heliostats. The receiver contains a heat absorbing medium like molten salt. By absorbing the thermal energy reflected from thousands of heliostats, the temperature would reach around 6000C and the heat can be used in thermal power plants to generate steam and thus run a turbine to produce electricity. One of the biggest advantages of CSP over conventional energy harvesting from Sun is that it can generate electricity during night for long hours of time from the thermal energy stored during daytime. This eliminates the usage of batteries or any other energy storing methods. The conversion efficiency is also high in CSP due to the high temperature achieved. With prior knowledge of the station coordinates, viz., the latitude and longitude, the day of the year and time, the direction or the path of sun can be fully determined. Typically, the sun's motion is tracked by the azimuth-elevation (Az-El) or the target-aligned configuration heliostats. In both these approaches, the mirror needs to be moved about two axes independently using two actuators in series with the mirror effectively mounted at a single point at the centre. This arrangement causes the mirror to deform in presence of gusty winds in a solar field which results in loss of pointing accuracy. Typically a beam error of less than 2-3 mrad is desirable in a large solar field and this value also includes other sources of loss of pointing accuracy like gravity and wind loading. In order to prevent this, a rigid support frame is required for each of the heliostats. In this work, two three degree-of-freedom parallel manipulators, viz., the 3-UPU wrist and 3-RPS, have been proposed to track the sun in central receiver systems. The main reasons for choosing a parallel manipulator as heliostat are its desirable characteristics like large load carrying capacity, high accuracy in positioning the mirror and easy to obtain the inverse kinematics and convenient for real time control. The proposed parallel manipulators support the load of the mirror, structure and wind loading at three points resulting in less deflection and thus a much larger mirror can be moved with the required tracking accuracy and without increasing the weight of the support structure. The algorithm for sun tracking is developed, extensive simulation study with respect to actuations required, variation of joint angles, spillage loss and leg intersection has been carried out. Using FEA, it is shown that for same sized mirror, wind loading of 22 m/s and maximum deflection requirement (2 mrad), the weight of the support structure is between 15% and 60% less with the parallel manipulators when compared to azimuth-elevation or the target-aligned configurations. A comprehensive study on stroke minimization of prismatic joints is carried out. It is found that a stroke of 700 mm is required for a 2 m x 2 m heliostat at Bangalore when the farthest heliostat is at a distance of 300 m from the tower. Although, there is an extra motor required to track the sun, the 3-RPS manipulator is better than the conventional methods if the mirror area per actuator criteria is taken into consideration. Prototypes of the Az-El and 3-RPS heliostats were made with a mirror size of 1 m x 1 m. A PID controller implemented using MATLAB-Simulink and a low cost, custom made motor driver circuit is used to control the motion of the 3-RPS heliostat. The algorithm developed is tested on the prototype by tracking a point marked on the wall of the lab space and is found to have a tracking error of only 7.1 mrad. Finally, the actual sun tracking is carried out on the roof of a building reflecting the sun-light to a wall situated 6.72 m above and a distance of 15.87 m from the heliostats. The images are captured at various instances of time from 11:30 a.m. to 3:30 p.m. on October 15th and November 10th, 2016, tracking errors are quantified and it is demonstrated that the proposed 3-RPS parallel manipulator can indeed work as a heliostat in concentrated solar power plants.
26

Alberti, L. T. "Flow around cylindrical towers : the stabalising role of vertical ribs /". 2006. http://hdl.handle.net/10019/490.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Vai alla bibliografia