Letteratura scientifica selezionata sul tema "Solar cells"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Solar cells".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Solar cells"
Rosana, N. T. Mary, e Joshua Amarnath . D. "Dye Sensitized Solar Cells for The Transformation of Solar Radiation into Electricity". Indian Journal of Applied Research 4, n. 6 (1 ottobre 2011): 169–70. http://dx.doi.org/10.15373/2249555x/june2014/53.
Testo completoMajidzade, Vusala A. "Sb2Se3-BASED SOLAR CELLS: OBTAINING AND PROPERTIES". Chemical Problems 18, n. 2 (2020): 181–98. http://dx.doi.org/10.32737/2221-8688-2020-2-181-198.
Testo completoVlaskin, V. I. "Nanocrystalline silicon carbide films for solar cells". Semiconductor Physics Quantum Electronics and Optoelectronics 19, n. 3 (30 settembre 2016): 273–78. http://dx.doi.org/10.15407/spqeo19.03.273.
Testo completoTsubomura, Hiroshi, e Hikaru Kobayashi. "Solar cells". Critical Reviews in Solid State and Materials Sciences 18, n. 3 (gennaio 1993): 261–326. http://dx.doi.org/10.1080/10408439308242562.
Testo completoLoferski, Joseph. "Solar cells". Solar Energy 42, n. 4 (1989): 355–56. http://dx.doi.org/10.1016/0038-092x(89)90040-6.
Testo completoMa, Dongling. "Solar Energy and Solar Cells". Nanomaterials 11, n. 10 (12 ottobre 2021): 2682. http://dx.doi.org/10.3390/nano11102682.
Testo completoK Sengar, Saurabh. "CIGS based Solar Cells - A Scaps 1D Study". International Journal of Science and Research (IJSR) 13, n. 7 (5 luglio 2024): 969–71. http://dx.doi.org/10.21275/sr24719130851.
Testo completoMohammad Bagher, Askari. "Comparison of Organic Solar Cells and Inorganic Solar Cells". International Journal of Renewable and Sustainable Energy 3, n. 3 (2014): 53. http://dx.doi.org/10.11648/j.ijrse.20140303.12.
Testo completoMathew, Xavier. "Solar cells and solar energy materials". Solar Energy 80, n. 2 (febbraio 2006): 141. http://dx.doi.org/10.1016/j.solener.2005.06.001.
Testo completoGraetzel, Michael. "Editorial: Solar Cells and Solar Fuels". Current Opinion in Electrochemistry 2, n. 1 (aprile 2017): A4. http://dx.doi.org/10.1016/j.coelec.2017.05.005.
Testo completoTesi sul tema "Solar cells"
Ehrler, Bruno. "Nanocrystalline solar cells". Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.607785.
Testo completoMusselman, Kevin Philip Duncan. "Nanostructured solar cells". Thesis, University of Cambridge, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609003.
Testo completoSubbaiyan, Navaneetha Krishnan. "Supramolecular Solar Cells". Thesis, University of North Texas, 2012. https://digital.library.unt.edu/ark:/67531/metadc149672/.
Testo completoStenberg, Jonas. "Perovskite solar cells". Thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-137302.
Testo completoBett, Alexander Jürgen [Verfasser], e Stefan [Akademischer Betreuer] Glunz. "Perovskite silicon tandem solar cells : : two-terminal perovskite silicon tandem solar cells using optimized n-i-p perovskite solar cells". Freiburg : Universität, 2020. http://d-nb.info/1214179703/34.
Testo completoNoel, Nakita K. "Advances in hybrid solar cells : from dye-sensitised to perovskite solar cells". Thesis, University of Oxford, 2014. https://ora.ox.ac.uk/objects/uuid:e0f54943-546a-49cd-8fd9-5ff07ec7bf0a.
Testo completoSøiland, Anne Karin. "Silicon for Solar Cells". Doctoral thesis, Norwegian University of Science and Technology, Department of Materials Technology, 2005. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-565.
Testo completoThis thesis work consists of two parts, each with a different motivation. Part II is the main part and was partly conducted in industry, at ScanWafer ASA’s plant no.2 in Glomfjord.
The large growth in the Photo Voltaic industry necessitates a dedicated feedstock for this industry, a socalled Solar Grade (SoG) feedstock, since the currently used feedstock rejects from the electronic industry can not cover the demand. Part I of this work was motivated by this urge for a SoG- feedstock. It was a cooperation with the Sintef Materials and Chemistry group, where the aim was to study the kinetics of the removal reactions for dissolved carbon and boron in a silicon melt by oxidative gas treatment. The main focus was on carbon, since boron may be removed by other means. A plasma arc was employed in combination with inductive heating. The project was, however, closed after only two experiments. The main observations from these two experiments were a significant boron removal, and the formation of a silica layer on the melt surface when the oxygen content in the gas was increased from 2 to 4 vol%. This silica layer inhibited further reactions.
Multi-crystalline (mc) silicon produced by directional solidification constitutes a large part of the solar cell market today. Other techniques are emerging/developing and to keep its position in the market it is important to stay competitive. Therefore increasing the knowledge on the material produced is necessary. Gaining knowledge also on phenomenas occurring during the crystallisation process can give a better process control.
Part II of this work was motivated by the industry reporting high inclusion contents in certain areas of the material. The aim of the work was to increase the knowledge of inclusion formation in this system. The experimental work was divided into three different parts;
1) Inclusion study
2) Extraction of melt samples during crystallisation, these were to be analysed for carbon- and nitrogen. Giving thus information of the contents in the liquid phase during soldification.
3) Fourier Transform Infrared Spectroscopy (FTIR)-measurements of the substitutional carbon contents in wafers taken from similar height positions as the melt samples. Giving thus information of the dissolved carbon content in the solid phase.
The inclusion study showed that the large inclusions found in this material are β-SiC and β-Si3N4. They appear in particularly high quantities in the top-cuts. The nitrides grow into larger networks, while the carbide particles tend to grow on the nitrides. The latter seem to act as nucleating centers for carbide precipitation. The main part of inclusions in the topcuts lie in the size range from 100- 1000 µm in diameter when measured by the Coulter laser diffraction method.
A method for sampling of the melt during crystallisation under reduced pressure was developed, giving thus the possibility of indicating the bulk concentration in the melt of carbon and nitrogen. The initial carbon concentration was measured to ~30 and 40 ppm mass when recycled material was employed in the charge and ~ 20 ppm mass when no recycled material was added. Since the melt temperature at this initial stage is ~1500 °C these carbon levels are below the solubility limit. The carbon profiles increase with increasing fraction solidified. For two profiles there is a tendency of decreasing contents at high fraction solidified.
For nitrogen the initial contents were 10, 12 and 44 ppm mass. The nitrogen contents tend to decrease with increasing fraction solidified. The surface temperature also decreases with increasing fraction solidified. Indicating that the melt is saturated with nitrogen already at the initial stage. The proposed mechanism of formation is by dissolution of coating particles, giving a saturated melt, where β-Si3N4 precipitates when cooling. Supporting this mechanism are the findings of smaller nitride particles at low fraction solidified, that the precipitated phase are β-particles, and the decreasing nitrogen contents with increasing fraction solidified.
The carbon profile for the solid phase goes through a maximum value appearing at a fraction solidified from 0.4 to 0.7. The profiles flatten out after the peak and attains a value of ~ 8 ppma. This drop in carbon content is associated with a precipitation of silicon carbide. It is suggested that the precipitation of silicon carbide occurs after a build-up of carbon in the solute boundary layer.
FTIR-measurements for substitutional carbon and interstitial oxygen were initiated at the institute as a part of the work. A round robin test was conducted, with the Energy Research Centre of the Netherlands (ECN) and the University of Milano-Bicocci (UniMiB) as the participants. The measurements were controlled against Secondary Ion Mass Spectrometer analyses. For oxygen the results showed a good correspondence between the FTIR-measurements and the SIMS. For carbon the SIMS-measurements were significantly lower than the FTIR-measurements. This is probably due to the low resistivity of the samples (~1 Ω cm), giving free carrier absorption and an overestimation of the carbon content.
Falkenberg, Christiane. "Optimizing Organic Solar Cells". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-89214.
Testo completoHadipour, Afshin. "Polymer tandem solar cells". [S.l. : Groningen : s.n. ; University Library of Groningen] [Host], 2007. http://irs.ub.rug.nl/ppn/305349066.
Testo completoVaynzof, Yana. "Inverted hybrid solar cells". Thesis, University of Cambridge, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609823.
Testo completoLibri sul tema "Solar cells"
Sharma, S. K., e Khuram Ali, a cura di. Solar Cells. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36354-3.
Testo completoArya, Sandeep, e Prerna Mahajan. Solar Cells. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-7333-0.
Testo completoTravino, Michael R. Dye-sensitized solar cells and solar cell performance. Hauppauge, N.Y: Nova Science Publisher, 2011.
Cerca il testo completoModdel, Garret, e Sachit Grover, a cura di. Rectenna Solar Cells. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-3716-1.
Testo completoHiramoto, Masahiro, e Seiichiro Izawa, a cura di. Organic Solar Cells. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9113-6.
Testo completoChoy, Wallace C. H., a cura di. Organic Solar Cells. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-4823-4.
Testo completoTress, Wolfgang. Organic Solar Cells. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10097-5.
Testo completoSankir, Nurdan Demirci, e Mehmet Sankir, a cura di. Photoelectrochemical Solar Cells. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119460008.
Testo completoHou, Shaocong. Fiber Solar Cells. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-2864-9.
Testo completoGiovanni, Palmisano, e Ciriminna Rosaria, a cura di. Flexible solar cells. Weinheim [Germany]: Wiley-VCH, 2008.
Cerca il testo completoCapitoli di libri sul tema "Solar cells"
Buecheler, Stephan, Lukas Kranz, Julian Perrenoud e Ayodhya Nath Tiwari. "CdTe Solar Cells solar cell". In Encyclopedia of Sustainability Science and Technology, 1976–2004. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0851-3_463.
Testo completoGrätzel, Michael. "Mesoscopic Solar Cells Mesoscopic Solar Cells". In Solar Energy, 79–96. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-5806-7_465.
Testo completoGrätzel, Michael. "Mesoscopic Solar Cells Mesoscopic Solar Cells". In Encyclopedia of Sustainability Science and Technology, 6566–83. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0851-3_465.
Testo completoGłowacki, Eric Daniel, Niyazi Serdar Sariciftci e Ching W. Tang. "Organic Solar Cells organic solar cell". In Solar Energy, 97–128. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-5806-7_466.
Testo completoGłowacki, Eric Daniel, Niyazi Serdar Sariciftci e Ching W. Tang. "Organic Solar Cells organic solar cell". In Encyclopedia of Sustainability Science and Technology, 7553–84. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0851-3_466.
Testo completoGregory, Peter. "Solar Cells". In High-Technology Applications of Organic Colorants, 45–52. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3822-6_6.
Testo completoLin, Ching-Fuh. "Solar Cells". In Topics in Applied Physics, 237–59. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-9392-6_9.
Testo completoBöer, Karl W. "Solar Cells". In Survey of Semiconductor Physics, 1119–70. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2912-1_34.
Testo completoZhu, Yimei, Hiromi Inada, Achim Hartschuh, Li Shi, Ada Della Pia, Giovanni Costantini, Amadeo L. Vázquez de Parga et al. "Solar Cells". In Encyclopedia of Nanotechnology, 2459. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_100783.
Testo completoGoodnick, Stephen M., e Christiana Honsberg. "Solar Cells". In Springer Handbook of Semiconductor Devices, 699–745. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-79827-7_19.
Testo completoAtti di convegni sul tema "Solar cells"
McGehee, Michael. "Nanostructured Solar Cells". In Solar Energy: New Materials and Nanostructured Devices for High Efficiency. Washington, D.C.: OSA, 2008. http://dx.doi.org/10.1364/solar.2008.swa1.
Testo completoRuby, Douglas S., Saleem Zaidi, S. Narayanan, Satoshi Yamanaka e Ruben Balanga. "RIE-Texturing of Industrial Multicrystalline Silicon Solar Cells". In ASME 2003 International Solar Energy Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/isec2003-44003.
Testo completoBhat, P. K., D. S. Shen e R. E. Hollingsworth. "Stability of amorphous silicon solar cells". In Amorphous silicon materials and solar cells. AIP, 1991. http://dx.doi.org/10.1063/1.41008.
Testo completoWang, Renze, e Zhiping Zhou. "Nanowire tandem solar cells". In SPIE Solar Energy + Technology, a cura di Loucas Tsakalakos. SPIE, 2012. http://dx.doi.org/10.1117/12.929104.
Testo completoFranklin, Evan, Andrew Blakers, Vernie Everett e Klaus Weber. "Sliver solar cells". In Microelectronics, MEMS, and Nanotechnology, a cura di Hark Hoe Tan, Jung-Chih Chiao, Lorenzo Faraone, Chennupati Jagadish, Jim Williams e Alan R. Wilson. SPIE, 2007. http://dx.doi.org/10.1117/12.759594.
Testo completoChambouleyron, I. "MULTIJUNCTION SOLAR CELLS". In Proceedings of the International School on Crystal Growth and Characterization of Advanced Materials. WORLD SCIENTIFIC, 1988. http://dx.doi.org/10.1142/9789814541589_0022.
Testo completoHo-Baillie, Anita. "Perovskite Solar Cells". In Organic, Hybrid, and Perovskite Photovoltaics XXII, a cura di Zakya H. Kafafi, Paul A. Lane, Gang Li, Ana Flávia Nogueira e Ellen Moons. SPIE, 2021. http://dx.doi.org/10.1117/12.2602805.
Testo completoEnriquez, Christian, Deidra Hodges, Angel De La Rosa, Luis Valerio Frias, Yves Ramirez, Victor Rodriguez, Daniel Rivera e Alberto Telles. "Perovskite Solar Cells". In 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC). IEEE, 2019. http://dx.doi.org/10.1109/pvsc40753.2019.8980712.
Testo completoPolman, Albert. "Plasmonic Solar Cells". In Optical Nanostructures for Photovoltaics. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/pv.2010.pwa2.
Testo completoBrandt, Martin S., e Martin Stutzmann. "Investigation of the Staebler-Wronski effect in a-Si:H by spin-dependent photoconductivity". In Amorphous silicon materials and solar cells. AIP, 1991. http://dx.doi.org/10.1063/1.41015.
Testo completoRapporti di organizzazioni sul tema "Solar cells"
Gur, Ilan. Nanocrystal Solar Cells. Office of Scientific and Technical Information (OSTI), gennaio 2006. http://dx.doi.org/10.2172/922721.
Testo completoHall, R. B., C. Bacon, V. DiReda, D. H. Ford, A. E. Ingram, J. Cotter, T. Hughes-Lampros, J. A. Rand, T. R. Ruffins e A. M. Barnett. Thin silicon solar cells. Office of Scientific and Technical Information (OSTI), dicembre 1992. http://dx.doi.org/10.2172/10121623.
Testo completoMatson, Rick. National solar technology roadmap: Sensitized solar cells. Office of Scientific and Technical Information (OSTI), giugno 2007. http://dx.doi.org/10.2172/1217460.
Testo completoHuo, Jiayan. Vapor deposited perovskites solar cells. Ames (Iowa): Iowa State University, gennaio 2019. http://dx.doi.org/10.31274/cc-20240624-1581.
Testo completoMcNeely, James B., Gerald H. Negley e Allen M. Barnett. GaAsP Top Solar Cells for Increased Solar Conversion Efficiency. Fort Belvoir, VA: Defense Technical Information Center, gennaio 1989. http://dx.doi.org/10.21236/ada206808.
Testo completoSinton, R. A., A. Cuevas, R. R. King e R. M. Swanson. High-efficiency concentrator silicon solar cells. Office of Scientific and Technical Information (OSTI), novembre 1990. http://dx.doi.org/10.2172/6343818.
Testo completoMitzi, David, e Yanfa Yan. High Performance Perovskite-Based Solar Cells. Office of Scientific and Technical Information (OSTI), gennaio 2020. http://dx.doi.org/10.2172/1582433.
Testo completoAger III, J. W., e W. Walukiewicz. High efficiency, radiation-hard solar cells. Office of Scientific and Technical Information (OSTI), ottobre 2004. http://dx.doi.org/10.2172/840450.
Testo completoSpeck, James S., Steven P. DenBaars, Umesh K. Mishra e Shuji Nakamura. High Performance InGaN-Based Solar Cells. Fort Belvoir, VA: Defense Technical Information Center, maggio 2012. http://dx.doi.org/10.21236/ada562115.
Testo completoPrasad, Paras N. Novel Flexible Plastic-Based Solar Cells. Fort Belvoir, VA: Defense Technical Information Center, marzo 2011. http://dx.doi.org/10.21236/ada566134.
Testo completo