Letteratura scientifica selezionata sul tema "Soft-tissue marine biological pump"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Soft-tissue marine biological pump".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Soft-tissue marine biological pump"
Galbraith, Eric D., e Luke C. Skinner. "The Biological Pump During the Last Glacial Maximum". Annual Review of Marine Science 12, n. 1 (3 gennaio 2020): 559–86. http://dx.doi.org/10.1146/annurev-marine-010419-010906.
Testo completoSwann, G. E. A., e A. M. Snelling. "Photic zone changes in the North West Pacific Ocean from MIS 4-5e". Climate of the Past Discussions 10, n. 4 (29 agosto 2014): 3631–60. http://dx.doi.org/10.5194/cpd-10-3631-2014.
Testo completoSwann, G. E. A., e A. M. Snelling. "Photic zone changes in the north-west Pacific Ocean from MIS 4–5e". Climate of the Past 11, n. 1 (6 gennaio 2015): 15–25. http://dx.doi.org/10.5194/cp-11-15-2015.
Testo completode Boer, A. M., A. J. Watson, N. R. Edwards e K. I. C. Oliver. "A multi-variable box model approach to the soft tissue carbon pump". Climate of the Past 6, n. 6 (21 dicembre 2010): 827–41. http://dx.doi.org/10.5194/cp-6-827-2010.
Testo completoAlthagbi, Hanan I., Walied M. Alarif, Khalid O. Al-Footy e Ahmed Abdel-Lateff. "Marine-Derived Macrocyclic Alkaloids (MDMAs): Chemical and Biological Diversity". Marine Drugs 18, n. 7 (17 luglio 2020): 368. http://dx.doi.org/10.3390/md18070368.
Testo completoLabes, Antje. "Marine Resources Offer New Compounds and Strategies for the Treatment of Skin and Soft Tissue Infections". Marine Drugs 21, n. 7 (29 giugno 2023): 387. http://dx.doi.org/10.3390/md21070387.
Testo completoRaff, Rudolf A., e Elizabeth C. Raff. "The Role of Biology in the Fossilization of Embryos and Other Soft-Bodied Organisms: Microbial Biofilms and Lagerstätten". Paleontological Society Papers 20 (ottobre 2014): 83–100. http://dx.doi.org/10.1017/s1089332600002813.
Testo completoKhatiwala, S., A. Schmittner e J. Muglia. "Air-sea disequilibrium enhances ocean carbon storage during glacial periods". Science Advances 5, n. 6 (giugno 2019): eaaw4981. http://dx.doi.org/10.1126/sciadv.aaw4981.
Testo completoSchmidt, Charlotte Vinther, e Ole G. Mouritsen. "Cephalopods as Challenging and Promising Blue Foods: Structure, Taste, and Culinary Highlights and Applications". Foods 11, n. 17 (24 agosto 2022): 2559. http://dx.doi.org/10.3390/foods11172559.
Testo completoKang, Moon Sung, Hyo Jung Jo, Hee Jeong Jang, Bongju Kim, Tae Gon Jung e Dong-Wook Han. "Recent Advances in Marine Biomaterials Tailored and Primed for the Treatment of Damaged Soft Tissues". Marine Drugs 21, n. 12 (25 novembre 2023): 611. http://dx.doi.org/10.3390/md21120611.
Testo completoTesi sul tema "Soft-tissue marine biological pump"
Sabourdy, Manon. "Nouvelles approches moléculaires pour étudier le rôle de l’activité phytoplanctonique sur le climat et les écosystèmes dans l’océan Austral". Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0450.
Testo completoThe biological pump of the Southern Ocean (BPSO) is a key component of a highly sensitive and rapidly changing food web. It also serves as an efficient mechanism for sequestering anthropogenic CO₂. Over past climate cycles, it has played a critical role in regulating atmospheric CO₂ concentrations. Despite its importance, the future of the BPSO remains uncertain, given the discrepancies between various projections for the coming century. This uncertainty largely stems from the limited data available beyond the instrumental record, which for the Antarctic region only spans the last few decades and the lack of previous studies on soft-tissue phytoplankton communities (non-fossilizable) in past environmental contexts. It is therefore essential to study past climate archives to better understand the evolution of the BPSO and its relationship with oceanic, atmospheric, and sea-ice conditions over the past millennia. For the first time, ancient sedimentary DNA (sedaDNA) sequences combined with lipid biomarker data offer insight into the distribution and evolution of phytoplankton communities in relation to environmental conditions in the Antarctic Peninsula (AP) region during the Holocene. The soft-tissue phytoplankton identified primarily belong to the divisions Stramenopiles, Cryptophytes, and Chlorophytes, with regional and temporal variations. From the early to mid-Holocene (8,000 to 4,000 years BP), conditions were generally warmer, leading to open ocean zones where primary production was dominated by diatoms (85-95% of the total phytoplankton), with a significant proportion of Cryptophytes (~50%) among the soft-bodied organisms. Over the past 4,000 years BP, ocean conditions showed cooling and an extension of the sea-ice season. Primary productivity increased, primarily driven by higher siliceous productivity, with diatom abundances exceeding 95% of total phytoplankton, while the contribution of soft-tissue phytoplankton decreased but became more diverse with the emergence of Chlorophytes alongside Cryptophytes. The study of the last millennium revealed a transition from natural conditions to an environment altered by current climate changes. The last 1,000 years BP were relatively cold, often associated with strong sea-ice conditions. Primary productivity declined, accompanied by a reduction in diatom contributions and an increase in soft-tissue organisms' role in carbon export to sediments. Finally, since 1850 CE (the post-industrial period), warming sea subsurface temperatures (by 0.3 ± 0.6°C) and reduced winter sea-ice cover have led to a sharp increase in the proportion of Cryptophytes (+10%) at the expense of diatoms. In this context, phytoplankton community compositions have already begun to change and now resemble those observed during the mid-Holocene. If this trend continues, diatoms could be progressively replaced by soft-tissue organisms, which are less efficient at exporting organic carbon to sediments, thereby reducing the long-term CO₂ sequestration capacity of the BPSO in the Antarctic Peninsula region
Capitoli di libri sul tema "Soft-tissue marine biological pump"
Gray, John S., e Michael Elliott. "Human impacts on soft-sediment systems—pollution". In Ecology of Marine Sediments. Oxford University Press, 2009. http://dx.doi.org/10.1093/oso/9780198569015.003.0013.
Testo completo