Letteratura scientifica selezionata sul tema "Soft-DTW"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Soft-DTW".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Soft-DTW"
Venkata Ramudu, Dr Balasani, Mr Chiranjeevi Kondabathini e Mr Udaya Kiran Mandhugula. "Enhancing Handwritten Signature Identification and Palm Biometric Objectives". INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 07, n. 12 (30 dicembre 2023): 1–13. http://dx.doi.org/10.55041/ijsrem27802.
Testo completoKang, Yi, Dong Yi Chen, Michael Lawo e Shi Ji Xia Hou. "A Wearable Swallowing Detecting Method Based on Nanometer Materials Sensor". Advances in Science and Technology 100 (ottobre 2016): 120–29. http://dx.doi.org/10.4028/www.scientific.net/ast.100.120.
Testo completoSun, Xiaojun, Yingbo Gao, Qiao Zhang e Shunliang Ding. "Machine Learning-Based Extraction Method for Marine Load Cycles with Environmentally Sustainable Applications". Sustainability 16, n. 11 (6 giugno 2024): 4840. http://dx.doi.org/10.3390/su16114840.
Testo completoWang, Feng, Hongbo Lin e Ziming Ma. "Transmission Line Icing Prediction Based on Dynamic Time Warping and Conductor Operating Parameters". Energies 17, n. 4 (18 febbraio 2024): 945. http://dx.doi.org/10.3390/en17040945.
Testo completoLi, Qing, Xinyan Zhang, Tianjiao Ma, Dagui Liu, Heng Wang e Wei Hu. "A Multi-step ahead photovoltaic power forecasting model based on TimeGAN, Soft DTW-based K-medoids clustering, and a CNN-GRU hybrid neural network". Energy Reports 8 (novembre 2022): 10346–62. http://dx.doi.org/10.1016/j.egyr.2022.08.180.
Testo completoWu, Xuning, Qian Li, Hu Yin, Zaoyuan Li, Jianhua Jiang, Menghan Si e Yangyang Zhang. "Real-Time Intelligent Recognition Method for Horizontal Well Marker Bed". Mathematical Problems in Engineering 2020 (17 giugno 2020): 1–8. http://dx.doi.org/10.1155/2020/8583943.
Testo completoDu, Yanling, Jiahao Huang, Jiasheng Chen, Ke Chen, Jian Wang e Qi He. "Enhanced Transformer Framework for Multivariate Mesoscale Eddy Trajectory Prediction". Journal of Marine Science and Engineering 12, n. 10 (4 ottobre 2024): 1759. http://dx.doi.org/10.3390/jmse12101759.
Testo completoVuckovic, C., A. Cremer, C. Minsart, L. Amininejad, J. Bottieau, D. Franchimont e C. Liefferinckx. "P0367 A Clustering approach to discriminate slow and rapid biologics switchers in difficult-to-treat Crohn’s Disease patients". Journal of Crohn's and Colitis 19, Supplement_1 (gennaio 2025): i842—i844. https://doi.org/10.1093/ecco-jcc/jjae190.0541.
Testo completoChen, Yuyao, Christian Obrecht e Frédéric Kuznik. "Enhancing peak prediction in residential load forecasting with soft dynamic time wrapping loss functions". Integrated Computer-Aided Engineering, 25 gennaio 2024, 1–14. http://dx.doi.org/10.3233/ica-230731.
Testo completoMa, Yan, Yiou Tang, Yang Zeng, Tao Ding e Yifu Liu. "An N400 identification method based on the combination of Soft-DTW and transformer". Frontiers in Computational Neuroscience 17 (16 febbraio 2023). http://dx.doi.org/10.3389/fncom.2023.1120566.
Testo completoTesi sul tema "Soft-DTW"
Lacoquelle, Charlotte. "Détection d'anomalies dans les séries temporelles déformées - Application à la surveillance des robots industriels". Electronic Thesis or Diss., Université de Toulouse (2023-....), 2024. http://www.theses.fr/2024TLSEI020.
Testo completoThis thesis addresses the problem of detecting time series outliers, focusing on systems with repetitive behavior, such as industrial robots operating on production lines. The research addresses several challenges, notably the significant amount of missing data within the collected datasets that results in irregular sampling of the time series reported by sensors, as well as variations in the duration of each task repetition across the time series.The anomaly detection approach presented in this paper consists of three stages.- The first stage identifies the repetitive cycles in the lengthy time series and segments them into individual time series corresponding to one task cycle, while accounting for possible temporal distortions.- The second stage computes a prototype for the cycles using a GPU-based barycenter algorithm, specifically tailored for very large time series.- The third stage uses the prototype to detect abnormal cycles by computing an anomaly score for each cycle.The overall approach, named WarpEd Time Series ANomaly Detection (WETSAND), makes use of the Dynamic Time Warping algorithm and its variants because they are suited to the distorted nature of the time series.The experiments have been carried out with real robot manipulators of Vitesco Technology plants. Robot manipulators constitute a significant portion of automation in today’s industry. Designed to perform specific, repetitive tasks safely alongside human operators, it is essential to predict and diagnose any deviation from their expected behavior. Consequently, monitoring these robots' behavior is crucial, as it minimizes production line downtime and prolongs the system's lifespan through maintenance schedule adjustments. In the digital era of Industry 4.0, where data collection, storage, and processing are ubiquitous, the parameters of these robots are continuously monitored in real-time, ensuring their tasks are executed flawlessly.The experiments show that WETSAND scales to large signals, computes human-friendly prototypes, works with very little data, and outperforms some recognized neural anomaly detection approaches such as autoencoders. A cloud-based user interface has been designed to deploy WETSAND in the Vitesco Technologies plants and it monitors online different robots in the production chains.This thesis is part of CIFRE program under the “Collaborative AI : Synergistic transformations in model based and data-based diagnosis” chair at ANITI. The research has been conducted through a collaboration between the Laboratory of Analysis and Architecture of Systems (LAAS) and Vitesco Technologies, situated in Toulouse, France
Capitoli di libri sul tema "Soft-DTW"
Bernardini, Alessandra, Roberto Meattini, Gianluca Palli e Claudio Melchiorri. "Simulative and Experimental Evaluation of a Soft-DTW Neural Network for sEMG-Based Robotic Grasping". In Human-Friendly Robotics 2022, 205–17. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-22731-8_15.
Testo completoKurbalija, Vladimir, Miloš Radovanović, Zoltan Geler e Mirjana Ivanović. "The Influence of Global Constraints on DTW and LCS Similarity Measures for Time-Series Databases". In Advances in Intelligent and Soft Computing, 67–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23163-6_10.
Testo completoAtti di convegni sul tema "Soft-DTW"
Tagliaferri, Mauro, Provence Barnouin, Hongyi Wei, Eric Bach, Christian O. Paschereit e Myles Bohon. "Applications of soft-DTW for Time Series Data Averaging Inside a Rotating Detonation Combustor". In AIAA AVIATION 2023 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2023. http://dx.doi.org/10.2514/6.2023-4143.
Testo completoKorablev, Yu A., e M. Yu Shestopalov. "Faults diagnostics on the basis of DTW-classification". In 2016 XIX IEEE International Conference on Soft Computing and Measurements (SCM). IEEE, 2016. http://dx.doi.org/10.1109/scm.2016.7519694.
Testo completo