Letteratura scientifica selezionata sul tema "Sodium"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Sodium".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Sodium"
Yoo, Mi-Hee, Soo-Jin Kim, Jun-Young Kwon, Hyung-Jin Nam e Dong-Il Kim. "Enhanced Production of hCTLA4Ig by Adding Sodium Butyrate and Sodium Pyruvate". KSBB Journal 26, n. 5 (31 ottobre 2011): 386–92. http://dx.doi.org/10.7841/ksbbj.2011.26.5.386.
Testo completoSimpson, F. O. "SODIUM INTAKE, BODY SODIUM, AND SODIUM EXCRETION". Lancet 332, n. 8601 (luglio 1988): 25–29. http://dx.doi.org/10.1016/s0140-6736(88)92954-6.
Testo completoShu Hu, Shu Hu, Baodong Gai Baodong Gai, Jingwei Guo Jingwei Guo, Pengyuan Wang Pengyuan Wang, Xueyang Li Xueyang Li, Hui Li Hui Li, Jinbo Liu Jinbo Liu et al. "Population inversion in sodium D2 transition based on sodium-ethane excimer pairs". Chinese Optics Letters 15, n. 11 (2017): 111401. http://dx.doi.org/10.3788/col201715.111401.
Testo completoChiotti, Premo, e Richard Markuszewski. "Binary systems sodium sulfide-sodium hydroxide and sodium carbonate-sodium hydroxide". Journal of Chemical & Engineering Data 30, n. 2 (aprile 1985): 197–201. http://dx.doi.org/10.1021/je00040a020.
Testo completo&NA;. "Bemiparin sodium/enoxaparin sodium". Reactions Weekly &NA;, n. 1379 (novembre 2011): 9. http://dx.doi.org/10.2165/00128415-201113790-00028.
Testo completo&NA;. "Bemiparin sodium/enoxaparin sodium". Reactions Weekly &NA;, n. 1393 (marzo 2012): 9–10. http://dx.doi.org/10.2165/00128415-201213930-00024.
Testo completo&NA;. "Dalteparin sodium/enoxaparin sodium". Reactions Weekly &NA;, n. 1365 (agosto 2011): 17. http://dx.doi.org/10.2165/00128415-201113650-00056.
Testo completo&NA;. "Dalteparin sodium/enoxaparin sodium". Reactions Weekly &NA;, n. 1097-1098 (aprile 2006): 12. http://dx.doi.org/10.2165/00128415-200610970-00036.
Testo completo&NA;. "Dalteparin sodium/tinzaparin sodium". Reactions Weekly &NA;, n. 877 (novembre 2001): 7. http://dx.doi.org/10.2165/00128415-200108770-00021.
Testo completo&NA;. "Danaparoid sodium/enoxaparin sodium". Reactions Weekly &NA;, n. 1263 (agosto 2009): 14–15. http://dx.doi.org/10.2165/00128415-200912630-00042.
Testo completoTesi sul tema "Sodium"
Thompson, Laura M. "The depletion of nitric oxide by reaction with molten sodium carbonate and sodium carbonate/sodium sulfide mixtures". Diss., Georgia Institute of Technology, 1995. http://hdl.handle.net/1853/5797.
Testo completoPryce, Morris David Jonathan. "Sodium Ordering and the Control of Properties in Sodium Cobaltate". Thesis, University of Liverpool, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.486940.
Testo completoWarrington, P. L. "Sodium-ceramic reactions". Thesis, University of Nottingham, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.373344.
Testo completoNose, Masafumi. "Studies on Sodium-containing Transition Metal Phosphates for Sodium-ion Batteries". 京都大学 (Kyoto University), 2016. http://hdl.handle.net/2433/215565.
Testo completoLee, Chi-Ming. "Pitting corrosion inhibition of mild steel by sodium molybdate and sodium silicate". Thesis, University of Nottingham, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.292172.
Testo completoWu, Di Ph D. Massachusetts Institute of Technology. "A layered sodium titanate as promising anode material for sodium ion batteries". Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/93004.
Testo completoCataloged from PDF version of thesis.
Includes bibliographical references (pages 58-60).
Sodium ion batteries have recently received great attention for large-scale energy applications because of the abundance and low cost of sodium source. Although some cathode materials with desirable electrochemical properties have been proposed, it's quite challenging to develop suitable anode materials with high energy density and good cyclability for sodium ion batteries. Herein, we report a layered material, 03-NaTiO2, that delivers 130mAhg-1 of reversible capacity and presents excellent cyclability with capacity retention over 97.5% after 40 cycles and high rate capability. Furthermore, by coupling the electrochemical process with in situ X-ray diffraction, the structure evolution and variation of cell parameters corresponding to an 03-03' phase transition during sodium deintercalation is investigated. Unusual lattice parameter variation was observed by in situ XRD, which can be related to the structure modulation with varying Na vacancy ordering. An irreversible structural modification upon overcharging is also confirmed by in situ XRD. In summary, our work demonstrates that 03-NaTiO2 is a very promising anode material for sodium ion batteries with high energy density.
by Di Wu.
S.M.
Carnevali, Sofia. "Unsteady aspects of sodium-water reaction : water cleaning of sodium containing equipments". Compiègne, 2012. http://www.theses.fr/2012COMP2034.
Testo completoSodium fast Reactor (FSR) is one of the most promising nuclear reactor concepts in the frame of Generation IV systems to be commercialised in the next decades. One important safety issue about this technology is the highly exothermal chemical reaction of sodium when brought in contact with liquid water. This situation is likely, in particular during decommissioning, when sodium needs to be firstly converted (‘destroyed’) into non reactive species. This is achieved by water washing : the major products are then gaseous hydrogen and corrosive soda. Today, such operations are performed in confined chambers to mitigate the consequences of any possible abnormal conditions. It has for long been believed that the main safety problem was the combustion of hydrogen in the surrounding air despite some pioneering works suggested that even without air the reaction could be explosive. It is extremely important to clarify the phenomenology of sodium-water interactions since available knowledge does not allow a robust extrapolation of existing data/model to full scale plants. The primary objective of this work is to identify and assess the details of the phenomenology, especially at the sodium/water interface, to isolate the leading mechanisms and to propose a robust and innovative modelling approach. A large body of yet unreleased experimental data extracted from the files of the French Commissariat à l’Energie Atomique (CEA) was collated and analysed on the basis of “explosion” physics. Some additional experiments were also performed to fill some gaps, especially about the kinetics of the reaction. The results strongly suggest that the fast expansion of gas producing a blast wave in certain conditions is a kind of vapour explosion. It also appears that any potential hydrogen-air explosion should be strongly mitigated by the large quantity of water vapour emanating also from the reaction zone. The limitations of existing modelling approaches are clearly identified and alternatives are proposed and offer a better perspective of extrapolation to full scale installations
Wester, Leanna E. "Offering sodium bentonite and sodium bicarbonate free-choice to lactating dairy cattle". Thesis, Virginia Tech, 2002. http://hdl.handle.net/10919/34899.
Testo completoMaster of Science
Raab, Eric Lowell. "Trapping sodium with light". Thesis, Massachusetts Institute of Technology, 1988. http://hdl.handle.net/1721.1/118103.
Testo completoSimone, Virginie. "Développement d'accumulateurs sodium-ion". Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAI092/document.
Testo completoBecause of the development of renewable energy and electric vehicles, the need for a large scale energy storage has increased. This type of storage requires a large amount of raw materials. Therefore low cost and abundant resources are necessary. Consequently the use of sodium batteries is of interest because sodium’s low cost, high abundance, and worldwide availability. This PhD thesis deals with the study of a full Na-ion cell containing a hard carbon negative electrode, and a layered oxide positive electrode. A shorter part concerns the electrolyte.Concerning the negative electrode, the first objective was to understand in detail the influence of the pyrolysis temperature of a hard carbon precursor, cellulose, on the final structure of the material and its consequences on the electrochemical performance. Many techniques were used to characterize the hard carbon structure as a function of the pyrolysis temperature. Localized graphitization, pore closure, and an increase in micropore size have been observed with increasing temperature. The best electrochemical performance has been reached with the hard carbon synthesized at 1600°C: a reversible capacity of around 300 mAh.g-1 stable over 200 cycles is obtained at 37.2 mA.g-1 with an initial coulombic efficiency of 84%. To deeper understand sodium insertion mechanisms in hard carbon structures impedance spectroscopy, SAXS and EDX were carried out on hard carbon electrodes cycled at different voltages.The layered oxide Na0.6Ni0.25Mn0.75O2 was investigated as the positive electrode. It was observed that with increasing calcination temperature the number of P3-type stacking faults decreases in favor of a more crystalline P2 phase. Then, the carbonate-based electrolyte has been optimized to guarantee the reproducibility of the electrochemical tests performed in a layered oxide//sodium metal configuration. A first oxidation capacity of around 130 mAh.g-1 is reached. However this value drops quickly after 40 cycles. Operando XRD analysis did partially explain the capacity decrease. Finally, the results of these investigations were used to design an optimized full cell which demonstrated promising performance during initial testing
Libri sul tema "Sodium"
Blashfield, Jean F. Sodium. Austin, Tex: Raintree Steck-Vaughn, 1999.
Cerca il testo completoBamberg, Ernst, e Wilhelm Schoner, a cura di. The Sodium Pump. Heidelberg: Steinkopff, 1994. http://dx.doi.org/10.1007/978-3-642-72511-1.
Testo completoNational Heart, Lung, and Blood Institute, a cura di. Daily sodium scorekeeper. [Washington, D.C.?: National Heart, Lung, and Blood Institute, 1987.
Cerca il testo completoA, Allen T. Jeff, Noble Denis e Reuter Harald, a cura di. Sodium-calcium exchange. Oxford [England]: Oxford University Press, 1989.
Cerca il testo completoA, Allen T. Jeff, Noble D e Reuter Harald, a cura di. Sodium-calcium exchange. Oxford: Oxford University Press, 1989.
Cerca il testo completoS, Stokes G., Marwood J. F. 1946- e International Congress of Pharmacology (10th : 1987 : Sydney, N.S.W.), a cura di. Sodium transport inhibitors. Basel: Karger, 1988.
Cerca il testo completoSudworth, J. L. The sodium sulfur battery. London: Chapman & Hall, 1985.
Cerca il testo completoKarmazyn, Morris, Metin Avkiran e Larry Fliegel, a cura di. The Sodium-Hydrogen Exchanger. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-0427-6.
Testo completoRuben, Peter C., a cura di. Voltage Gated Sodium Channels. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-41588-3.
Testo completoHyndman, Kelly Anne, e Thomas L. Pannabecker, a cura di. Sodium and Water Homeostasis. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-3213-9.
Testo completoCapitoli di libri sul tema "Sodium"
Newman, Jonathan. "Sodium, Sodium Sensitivity". In Encyclopedia of Behavioral Medicine, 2109. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-39903-0_1284.
Testo completoNewman, Jonathan. "Sodium, Sodium Sensitivity". In Encyclopedia of Behavioral Medicine, 1851–52. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-1005-9_1284.
Testo completoBell, R. N., W. L. Jolly e L. F. Aurieth. "Sodium Pyrophosphates (Sodium Diphosphates)". In Inorganic Syntheses, 98–101. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470132340.ch24.
Testo completoBell, R. N., W. L. Jolly e L. F. Audrieth. "Sodium Triphosphate (Sodium Tripolyphosphate)". In Inorganic Syntheses, 101–3. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470132340.ch25.
Testo completoGaillardet, Jérôme. "Sodium". In Encyclopedia of Earth Sciences Series, 1–4. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39193-9_240-1.
Testo completoGaillardet, Jérôme. "Sodium". In Encyclopedia of Earth Sciences Series, 1–4. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39193-9_240-2.
Testo completoGaillardet, Jérôme. "Sodium". In Encyclopedia of Earth Sciences Series, 1344–47. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-39312-4_240.
Testo completoSawyer, A. K. "Sodium". In Inorganic Reactions and Methods, 199–200. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145258.ch45.
Testo completoSawyer, A. K. "Sodium". In Inorganic Reactions and Methods, 202. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145258.ch50.
Testo completoSawyer, A. K. "Sodium". In Inorganic Reactions and Methods, 204. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145258.ch53.
Testo completoAtti di convegni sul tema "Sodium"
Feng, Yan, Tingwei Fan e Tianhua Zhou. "Sodium Magnetometry". In CLEO: Applications and Technology. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/cleo_at.2019.jw2a.115.
Testo completo"Thermal Processing of Sodium sulphate to Sodium carbonate". In Mar. 17-18, 2022 Johannesburg (South Africa). International Institute of Chemical, Biological & Environmental Engineering, 2022. http://dx.doi.org/10.17758/iicbe3.c0322248.
Testo completoBamatov, I. М., e D. M. Bamatov. "Coating of Sodium Aluminosilicate with Sodium Sulphate and Sodium Carbonate in V-Star Reactor". In Proceedings of the International Symposium “Engineering and Earth Sciences: Applied and Fundamental Research” (ISEES 2018). Paris, France: Atlantis Press, 2018. http://dx.doi.org/10.2991/isees-18.2018.29.
Testo completoSamadhi, Tjokorde Walmiki. "Thermochemical analysis of laterite ore alkali roasting: Comparison of sodium carbonate, sodium sulfate, and sodium hydroxide". In PROCEEDINGS OF THE 1ST INTERNATIONAL PROCESS METALLURGY CONFERENCE (IPMC 2016). Author(s), 2017. http://dx.doi.org/10.1063/1.4974429.
Testo completoSpoerke, Erik. "Sodium-Based Batteries." In Proposed for presentation at the DOE Office of Electricity 2022 Peer Review held October 11-13, 2022 in Albuquerque, NM. US DOE, 2022. http://dx.doi.org/10.2172/2005354.
Testo completoAoyagi, Mitsuhiro, Akihiro Uchibori, Takahi Takata, David L. Y. Louie e Andrew J. Clark. "Sodium Fire Analysis Using a Sodium Chemistry Package in MELCOR". In 2020 International Conference on Nuclear Engineering collocated with the ASME 2020 Power Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/icone2020-16751.
Testo completoPeng, Kang-wei, Zhi-gang Zhang, Ming Guo, Chao Wang e Shu-bin Sun. "Experimental Study on Sodium Column Fire of Sodium-Cooled Fast Reactor". In 2013 21st International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/icone21-16089.
Testo completoSchuller, Michael, Brad Fiebig, Patricia Hudson e Alicia Williams. "Improved sodium pool temperature control in a sodium exposure test cell". In 35th Intersociety Energy Conversion Engineering Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2000. http://dx.doi.org/10.2514/6.2000-2926.
Testo completoKazemian, Sina, B. K. Bujang Huat, A. Thamer Mohammed e Maassoumeh Barghchi. "The Effect of Sodium Silicate on Cement-Sodium Silicate System Grout". In Modern Methods and Advances in Structural Engineering and Construction. Singapore: Research Publishing Services, 2011. http://dx.doi.org/10.3850/978-981-08-7920-4_s2-g01-cd.
Testo completoDitton, Destinee, Aaron Goeckner, Grace James, Nick Knowles, Donald Macdonald, Matthew Bernards e James Moberly. "Sodium Sulfate Salt Splitting for Sulfuric Acid and Sodium Hydroxide Production". In 2024 Waste-management Education Research Conference (WERC). IEEE, 2024. http://dx.doi.org/10.1109/werc62138.2024.10570056.
Testo completoRapporti di organizzazioni sul tema "Sodium"
Author, Not Given. Sodium Borate Conversion to Sodium Borohydride. Office of Scientific and Technical Information (OSTI), dicembre 2008. http://dx.doi.org/10.2172/948580.
Testo completoPeterson, R. A. Sodium Diuranate and Sodium Aluminosilicate Precipitation Testing Results. Office of Scientific and Technical Information (OSTI), ottobre 2000. http://dx.doi.org/10.2172/766656.
Testo completoMiyamoto, Seiichi, e Rami Keren. Improving Efficiency of Reclamation of Sodium-Affected Soils. United States Department of Agriculture, dicembre 2000. http://dx.doi.org/10.32747/2000.7570569.bard.
Testo completoWILLIAMS, J. C., e B. E. HEY. Comparison Between Sodium Nitrite & Sodium Hydroxide Spray Accident. Office of Scientific and Technical Information (OSTI), novembre 2001. http://dx.doi.org/10.2172/807506.
Testo completoPeterson, R. A. Sodium Diuranate and Sodium Aluminosilicate Continuous Precipitation Testing Results. Office of Scientific and Technical Information (OSTI), aprile 2001. http://dx.doi.org/10.2172/779680.
Testo completoLeone, S. M. Pilot plant processing of sodium bifluoride to sodium fluoride pellets. Office of Scientific and Technical Information (OSTI), gennaio 1985. http://dx.doi.org/10.2172/5081953.
Testo completoBarnes, M. J. Decomposition of Sodium Tetraphenylborate. Office of Scientific and Technical Information (OSTI), novembre 1998. http://dx.doi.org/10.2172/4971.
Testo completoDarcy, Philip, David Trevett e John Askew. Sodium Hydroxide Recycling System. Fort Belvoir, VA: Defense Technical Information Center, gennaio 2003. http://dx.doi.org/10.21236/ada607422.
Testo completoDodds, N. E., e S. P. Henslee. Sodium bond defect investigations. Office of Scientific and Technical Information (OSTI), giugno 1990. http://dx.doi.org/10.2172/1548400.
Testo completoMa, Y. Solid-state sodium batteries using polymer electrolytes and sodium intercalation electrode materials. Office of Scientific and Technical Information (OSTI), agosto 1996. http://dx.doi.org/10.2172/414308.
Testo completo