Segui questo link per vedere altri tipi di pubblicazioni sul tema: Smash products.

Articoli di riviste sul tema "Smash products"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "Smash products".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.

1

Wu, Zhi Xiang. "Generalized Smash Products". Acta Mathematica Sinica, English Series 20, n. 1 (gennaio 2004): 125–34. http://dx.doi.org/10.1007/s10114-003-0293-z.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Chin, William. "Spectra of smash products". Israel Journal of Mathematics 72, n. 1-2 (febbraio 1990): 84–98. http://dx.doi.org/10.1007/bf02764612.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Fang, Xiao-Li, e Blas Torrecillas. "Twisted Smash Products and L-R Smash Products for Biquasimodule Hopf Quasigroups". Communications in Algebra 42, n. 10 (14 maggio 2014): 4204–34. http://dx.doi.org/10.1080/00927872.2013.806520.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Wang, Wei, Nan Zhou e Shuanhong Wang. "Semidirect products of weak multiplier Hopf algebras: Smash products and smash coproducts". Communications in Algebra 46, n. 8 (18 gennaio 2018): 3241–61. http://dx.doi.org/10.1080/00927872.2017.1407421.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

LYDAKIS, MANOS. "Smash products and Γ-spaces". Mathematical Proceedings of the Cambridge Philosophical Society 126, n. 2 (marzo 1999): 311–28. http://dx.doi.org/10.1017/s0305004198003260.

Testo completo
Abstract (sommario):
In this paper we construct a symmetric monoidal smash product of Γ-spaces modelling the smash product of connective spectra. For the corresponding theory of ring-spectra, we refer the reader to [Sch].
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Guo, Shuangjian, Xiaohui Zhang, Yuanyuan Ke e Yizheng Li. "Enveloping actions and duality theorems for partial twisted smash products". Filomat 34, n. 10 (2020): 3217–27. http://dx.doi.org/10.2298/fil2010217g.

Testo completo
Abstract (sommario):
In this paper, we first generalize the theorem about the existence of an enveloping action to a partial twisted smash product. Then we construct a Morita context between the partial twisted smash product and the twisted smash product related to the enveloping action. Finally, we present versions of the duality theorems of Blattner-Montgomery for partial twisted smash products.
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Chuang, Chen-Lian, e Yuan-Tsung Tsai. "Smash products and differential identities". Transactions of the American Mathematical Society 364, n. 8 (1 agosto 2012): 4155–68. http://dx.doi.org/10.1090/s0002-9947-2012-05454-7.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Ribeiro Alvares, Edson, Marcelo Muniz Alves e María Julia Redondo. "Cohomology of partial smash products". Journal of Algebra 482 (luglio 2017): 204–23. http://dx.doi.org/10.1016/j.jalgebra.2017.03.020.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Bergen, Jeffrey, e S. Montgomery. "Smash products and outer derivations". Israel Journal of Mathematics 53, n. 3 (dicembre 1986): 321–45. http://dx.doi.org/10.1007/bf02786565.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Siciliano, Salvatore, e Hamid Usefi. "Lie structure of smash products". Israel Journal of Mathematics 217, n. 1 (marzo 2017): 93–110. http://dx.doi.org/10.1007/s11856-017-1439-5.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
11

Liu, Wei, Xiaoli Fang e Blas Torrecillas. "Twisted BiHom-smash products and L-R BiHom-smash products for monoidal BiHom-Hopf algebras". Colloquium Mathematicum 159, n. 2 (2020): 171–93. http://dx.doi.org/10.4064/cm7695-12-2018.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
12

Osterburg, James. "Smash Products and G-Galois Actions". Proceedings of the American Mathematical Society 98, n. 2 (ottobre 1986): 217. http://dx.doi.org/10.2307/2045687.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
13

Alonso Alvarez, J. N., J. M. Fernández Vilaboa e R. González Rodríguez. "Smash (co)Products and skew pairings". Publicacions Matemàtiques 45 (1 luglio 2001): 467–75. http://dx.doi.org/10.5565/publmat_45201_09.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
14

Bergen, Jeffrey, e Piotr Grzeszczuk. "SMASH PRODUCTS SATISFYING A POLYNOMIAL IDENTITY". Communications in Algebra 33, n. 1 (26 gennaio 2005): 221–33. http://dx.doi.org/10.1081/agb-200040986.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
15

Wang, Caihong, e Shenglin Zhu. "Smash Products ofH-Simple Module Algebras". Communications in Algebra 41, n. 5 (20 maggio 2013): 1836–45. http://dx.doi.org/10.1080/00927872.2011.651761.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
16

Brzeziński, Tomasz, e Zhengming Jiao. "R-smash products of Hopf quasigroups". Arabian Journal of Mathematics 1, n. 1 (24 marzo 2012): 39–46. http://dx.doi.org/10.1007/s40065-012-0020-7.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
17

Yokogawa, Kenji. "Hopf-Galois extensions and smash products". Journal of Algebra 107, n. 1 (aprile 1987): 138–52. http://dx.doi.org/10.1016/0021-8693(87)90080-9.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
18

Lück, Wolfgang, Holger Reich e Marco Varisco. "Commuting Homotopy Limits and Smash Products". K-Theory 30, n. 2 (ottobre 2003): 137–65. http://dx.doi.org/10.1023/b:kthe.0000018387.87156.c4.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
19

Qingzhong, Ji, e Qin Hourong. "On Smash Products Of Hopf Algebras". Communications in Algebra 34, n. 9 (settembre 2006): 3203–22. http://dx.doi.org/10.1080/00927870600778365.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
20

Osterburg, James. "Smash products and $G$-Galois actions". Proceedings of the American Mathematical Society 98, n. 2 (1 febbraio 1986): 217. http://dx.doi.org/10.1090/s0002-9939-1986-0854022-x.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
21

Baues, Hans-Joachim, e Fernando Muro. "Smash Products for Secondary Homotopy Groups". Applied Categorical Structures 16, n. 5 (2 ottobre 2007): 551–616. http://dx.doi.org/10.1007/s10485-007-9071-x.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
22

Guo, Shuangjian. "On generalized partial twisted smash products". Czechoslovak Mathematical Journal 64, n. 3 (settembre 2014): 767–82. http://dx.doi.org/10.1007/s10587-014-0131-8.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
23

Cai, C. R., e H. X. Chen. "Coactions, Smash Products, and Hopf Modules". Journal of Algebra 167, n. 1 (luglio 1994): 85–99. http://dx.doi.org/10.1006/jabr.1994.1176.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
24

Lü, Jiafeng, Panpan Wang e Ling Liu. "On BiHom-L-R Smash Products". Algebra Colloquium 30, n. 02 (giugno 2023): 245–62. http://dx.doi.org/10.1142/s1005386723000202.

Testo completo
Abstract (sommario):
Let [Formula: see text] be a BiHom-Hopf algebra and [Formula: see text] be an [Formula: see text]-BiHom-bimodule algebra, where the maps [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] are bijective. We first prove the Maschke-type theorem for the BiHom-L-R smash product over a finite-dimensional semisimple BiHom-Hopf algebra. Next we give a Morita context between the BiHom-subalgebra [Formula: see text] and the BiHom-L-R smash product [Formula: see text].
Gli stili APA, Harvard, Vancouver, ISO e altri
25

Farinati, Marco. "Hochschild duality, localization, and smash products". Journal of Algebra 284, n. 1 (febbraio 2005): 415–34. http://dx.doi.org/10.1016/j.jalgebra.2004.09.009.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
26

WANG, DINGGUO, e YUANYUAN KE. "THE CALABI–YAU PROPERTY OF TWISTED SMASH PRODUCTS". Journal of Algebra and Its Applications 13, n. 03 (31 ottobre 2013): 1350118. http://dx.doi.org/10.1142/s0219498813501181.

Testo completo
Abstract (sommario):
Let H be a finite-dimensional cocommutative semisimple Hopf algebra and A * H a twisted smash product. The Calabi–Yau (CY) property of twisted smash product is discussed. It is shown that if A is a CY algebra of dimension dA, a necessary and sufficient condition for A * H to be a CY Hopf algebra is given.
Gli stili APA, Harvard, Vancouver, ISO e altri
27

Delvaux, Lydia. "SEMI-DIRECT PRODUCTS OF MULTIPLIER HOPF ALGEBRAS: SMASH PRODUCTS". Communications in Algebra 30, n. 12 (31 dicembre 2002): 5961–77. http://dx.doi.org/10.1081/agb-120016026.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
28

Zhang, Liangyun, Huixiang Chen e Jinqi Li. "TWISTED PRODUCTS AND SMASH PRODUCTS OVER WEAK HOPF ALGEBRAS". Acta Mathematica Scientia 24, n. 2 (aprile 2004): 247–58. http://dx.doi.org/10.1016/s0252-9602(17)30381-8.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
29

Zhang, Liangyun, e Ruifang Niu. "MASCHKE-TYPE THEOREM FOR PARTIAL SMASH PRODUCTS". International Electronic Journal of Algebra 19, n. 19 (1 giugno 2016): 49. http://dx.doi.org/10.24330/ieja.266192.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
30

Ulbrich, K. H. "Smash products and comodules of linear maps". Tsukuba Journal of Mathematics 14, n. 2 (dicembre 1990): 371–78. http://dx.doi.org/10.21099/tkbjm/1496161459.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
31

Cohen, Miriam. "Smash products, inner actions and quotient rings". Pacific Journal of Mathematics 125, n. 1 (1 novembre 1986): 45–66. http://dx.doi.org/10.2140/pjm.1986.125.45.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
32

GUO, SHUANGJIAN, SHENGXIANG WANG e LONG WANG. "Partial representation of partial twisted smash products". Publicationes Mathematicae Debrecen 89, n. 1-2 (1 luglio 2016): 23–41. http://dx.doi.org/10.5486/pmd.2016.7277.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
33

LINCHENKO, V., S. MONTGOMERY e L. W. SMALL. "STABLE JACOBSON RADICALS AND SEMIPRIME SMASH PRODUCTS". Bulletin of the London Mathematical Society 37, n. 06 (dicembre 2005): 860–72. http://dx.doi.org/10.1112/s0024609305004662.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
34

Selick, Paul, e Jie Wu. "On functorial decompositions of self-smash products". manuscripta mathematica 111, n. 4 (1 agosto 2003): 435–57. http://dx.doi.org/10.1007/s00229-002-0353-1.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
35

Liangyun, Zhang. "L-R smash products for bimodule algebras*". Progress in Natural Science 16, n. 6 (1 giugno 2006): 580–87. http://dx.doi.org/10.1080/10020070612330038.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
36

Childs, L. N. "Azumaya algebras which are not smash products". Rocky Mountain Journal of Mathematics 20, n. 1 (marzo 1990): 75–89. http://dx.doi.org/10.1216/rmjm/1181073160.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
37

Bulacu, Daniel, Florin Panaite e Freddy Van Oystaeyen. "Quasi-hopf algebra actions and smash products". Communications in Algebra 28, n. 2 (gennaio 2000): 631–51. http://dx.doi.org/10.1080/00927870008826849.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
38

Yu, Xiaolan, e Yinhuo Zhang. "The Calabi–Yau property of smash products". Journal of Algebra 358 (maggio 2012): 189–214. http://dx.doi.org/10.1016/j.jalgebra.2012.03.002.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
39

Zhu, Bin. "Smash products of quasi-hereditary graded algebras". Archiv der Mathematik 72, n. 6 (giugno 1999): 433–37. http://dx.doi.org/10.1007/s000130050352.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
40

Zheng, Lijing, Chonghui Huang e Qianhong Wan. "On the representation dimension of smash products". Advances in Applied Clifford Algebras 27, n. 3 (19 aprile 2017): 2885–97. http://dx.doi.org/10.1007/s00006-017-0783-1.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
41

Wang, Caihong, e Shenglin Zhu. "On smash products of transitive module algebras". Chinese Annals of Mathematics, Series B 31, n. 4 (21 giugno 2010): 541–54. http://dx.doi.org/10.1007/s11401-010-0586-3.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
42

Fang, Xiao-Li, e Tae-Hwa Kim. "(𝜃,ω)-Twisted Radford’s Hom-biproduct and ϖ-Yetter–Drinfeld modules for Hom-Hopf algebras". Journal of Algebra and Its Applications 19, n. 03 (marzo 2020): 2050046. http://dx.doi.org/10.1142/s0219498820500462.

Testo completo
Abstract (sommario):
To unify different definitions of smash Hom-products in a Hom-bialgebra [Formula: see text], we firstly introduce the notion of [Formula: see text]-twisted smash Hom-product [Formula: see text]. Secondly, we find necessary and sufficient conditions for the twisted smash Hom-product [Formula: see text] and the twisted smash Hom-coproduct [Formula: see text] to afford a Hom-bialgebra, which generalize the well-known Radford’s biproduct and the Hom-biproduct obtained in [H. Li and T. Ma, A construction of the Hom-Yetter–Drinfeld category, Colloq. Math. 137 (2014) 43–65]. Furthermore, we introduce the notion of the category of [Formula: see text]-Yetter-Drinfeld modules which unifies the ones of Hom-Yetter Drinfeld category appeared in [H. Li and T. Ma, A construction of the Hom-Yetter–Drinfeld category, Colloq. Math. 137 (2014) 43–65] and [A. Makhlouf and F. Panaite, Twisting operators, twisted tensor products and smash products for Hom-associative algebras, J. Math. Glasgow 513–538 (2016) 58]. Finally, we prove that the [Formula: see text]-twisted Radford’s Hom-biproduct [Formula: see text] is a Hom-bialgebra if and only if [Formula: see text] is a Hom-bialgebra in the category of [Formula: see text]-Yetter–Drinfeld modules [Formula: see text], generalizing the well-known Majid’s conclusion.
Gli stili APA, Harvard, Vancouver, ISO e altri
43

Panaite, Florin. "Iterated crossed products". Journal of Algebra and Its Applications 13, n. 07 (2 maggio 2014): 1450036. http://dx.doi.org/10.1142/s0219498814500364.

Testo completo
Abstract (sommario):
We define a "mirror version" of Brzeziński's crossed product and we prove that, under certain circumstances, a Brzeziński crossed product D ⊗R,σ V and a mirror version [Formula: see text] may be iterated, obtaining an algebra structure on W ⊗ D ⊗ V. Particular cases of this construction are the iterated twisted tensor product of algebras and the quasi-Hopf two-sided smash product.
Gli stili APA, Harvard, Vancouver, ISO e altri
44

Shen, Bingliang, e Ling Liu. "The Maschke-Type Theorem and Morita Context for BiHom-Smash Products". Advances in Mathematical Physics 2021 (13 gennaio 2021): 1–10. http://dx.doi.org/10.1155/2021/6677332.

Testo completo
Abstract (sommario):
Let H , α H , β H , ω H , ψ H , S H be a BiHom-Hopf algebra and A , α A , β A be an H , α H , β H -module BiHom-algebra. Then, in this paper, we study some properties on the BiHom-smash product A # H . We construct the Maschke-type theorem for the BiHom-smash product A # H and form an associated Morita context A H , A H A A # H , A # H A A H , A # H .
Gli stili APA, Harvard, Vancouver, ISO e altri
45

Mu, Qiang. "Smash product construction of modular lattice vertex algebras". Electronic Research Archive 30, n. 1 (2021): 204–20. http://dx.doi.org/10.3934/era.2022011.

Testo completo
Abstract (sommario):
<abstract><p>Motivated by a work of Li, we study nonlocal vertex algebras and their smash products over fields of positive characteristic. Through smash products, modular vertex algebras associated with positive definite even lattices are reconstructed. This gives a different construction of the modular vertex algebras obtained from integral forms introduced by Dong and Griess in lattice vertex operator algebras over a field of characteristic zero.</p></abstract>
Gli stili APA, Harvard, Vancouver, ISO e altri
46

Albuquerque, Helena, e Florin Panaite. "On Quasi-Hopf Smash Products and Twisted Tensor Products of Quasialgebras". Algebras and Representation Theory 12, n. 2-5 (5 marzo 2009): 199–234. http://dx.doi.org/10.1007/s10468-009-9143-8.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
47

Jensen, Anders, e Soren Jondrup. "Smash products, group actions and group graded rings." MATHEMATICA SCANDINAVICA 68 (1 dicembre 1991): 161. http://dx.doi.org/10.7146/math.scand.a-12353.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
48

Pirkovskii, A. Yu. "Arens-Michael enveloping algebras and analytic smash products". Proceedings of the American Mathematical Society 134, n. 9 (17 febbraio 2006): 2621–31. http://dx.doi.org/10.1090/s0002-9939-06-08251-7.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
49

Bergen, Jeffrey. "A note on smash products over frobenius algebras". Communications in Algebra 21, n. 11 (gennaio 1993): 4021–24. http://dx.doi.org/10.1080/00927879308824780.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
50

Pan, Qun-xing. "On L-R Smash Products of Hopf Algebras". Communications in Algebra 40, n. 10 (ottobre 2012): 3955–73. http://dx.doi.org/10.1080/00927872.2011.576735.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!

Vai alla bibliografia