Letteratura scientifica selezionata sul tema "Small Immunology"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Small Immunology".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Articoli di riviste sul tema "Small Immunology"

1

Chong, S. K. F., e J. A. Walker-Smith. "Immunology of small bowel disease". Journal of the Royal Society of Medicine 80, n. 10 (ottobre 1987): 656–59. http://dx.doi.org/10.1177/014107688708001023.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Bland, P. W., e M. Bailey. "Immunology of the small intestine". Transplantation Proceedings 30, n. 6 (settembre 1998): 2560–61. http://dx.doi.org/10.1016/s0041-1345(98)00725-8.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Kumar, P. J. "Small intestinal immunology and coeliac disease". Current Opinion in Gastroenterology 6, n. 2 (aprile 1990): 280–87. http://dx.doi.org/10.1097/00001574-199004000-00018.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Allenspach, Karin. "Clinical Immunology and Immunopathology of the Canine and Feline Intestine". Veterinary Clinics of North America: Small Animal Practice 41, n. 2 (marzo 2011): 345–60. http://dx.doi.org/10.1016/j.cvsm.2011.01.004.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Li, Jindian, Juno Van Valkenburgh, Xingfang Hong, Peter S. Conti, Xianzhong Zhang e Kai Chen. "Small molecules as theranostic agents in cancer immunology". Theranostics 9, n. 25 (2019): 7849–71. http://dx.doi.org/10.7150/thno.37218.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Kennedy, Melissa A. "A Brief Review of the Basics of Immunology: The Innate and Adaptive Response". Veterinary Clinics of North America: Small Animal Practice 40, n. 3 (maggio 2010): 369–79. http://dx.doi.org/10.1016/j.cvsm.2010.01.003.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Sarnacki, Sabine, e Nadine Cerf-Bensussan. "Immunologic aspects of small bowel transplantation". Current Opinion in Organ Transplantation 4, n. 4 (dicembre 1999): 343. http://dx.doi.org/10.1097/00075200-199912000-00008.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Berger, M., A. Zeevi, D. G. Farmer e K. M. Abu-Elmagd. "Immunologic Challenges in Small Bowel Transplantation". American Journal of Transplantation 12 (26 novembre 2012): S2—S8. http://dx.doi.org/10.1111/j.1600-6143.2012.04332.x.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Breneman, James C. "Immunology of Delayed Food Allergy". Otolaryngology–Head and Neck Surgery 113, n. 6 (dicembre 1995): 701–4. http://dx.doi.org/10.1016/s0194-59989570008-0.

Testo completo
Abstract (sommario):
Studies here and abroad are stockpiling evidence that immunoglobulin E explains only a small part of food allergy. Involvement of the entire immune system is evident if the more prevalent delayed-type food allergy is to be explained. To adequately diagnose food hypersensitivity a testing technique must be used that identifies delayed food allergy, such as the patch test here described, along with a test that diagnoses immediate immunoglobulin E-mediated food allergy.
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Cicalese, L., W. M. Halfter, P. F. Heeckt, W. H. Schraut e A. J. Bauer. "Immunology and functional sequelae of acute rejecting rat small intestinal allografts". Gastroenterology 107, n. 4 (ottobre 1994): 1232. http://dx.doi.org/10.1016/0016-5085(94)90325-5.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Tesi sul tema "Small Immunology"

1

Hosker, Harold Stephen Ronald. "Alveolar macrophage and blood monocyte function in small cell lung cancer". Thesis, University of Newcastle Upon Tyne, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.241364.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Leszczyńska, Katarzyna. "Signalling and function of the small Rho GTPase RhoJ in endothelial cells". Thesis, University of Birmingham, 2011. http://etheses.bham.ac.uk//id/eprint/1495/.

Testo completo
Abstract (sommario):
RhoJ is an endothelial expressed Rho GTPase, and its knock-down impairs endothelial cell (EC) migration and tubulogenesis, increases stress fibre (SF) and focal adhesion (FA) numbers. This work aimed to determine the intracellular localisation of RhoJ, identify its binding partners, test how it is activated and further explore its function in ECs. Endogenous RhoJ localised to FAs and overexpression of its active mutant (daRhoJ) promoted EC migration, and diminished FA and SF numbers. In addition to FAs, overexpressed RhoJ localised also to endosomes and RhoJ knock-down slightly delayed transferrin recycling. Vascular endothelial growth factor (VEGF), fibroblast growth factor 2 (FGF-2) and thrombin activated RhoJ in ECs. PAK-interacting exchange factor β (βPIX) and G protein-coupled receptor kinase-interacting target 1 (GIT1), which promote FA disassembly, were identified as RhoJ-binding partners. RhoJ co-localised with these proteins in ECs, and βPIX knock-down and to a lesser extent GIT1 knock-down reduced RhoJ localisation to FAs. Overexpression of daRhoJ increased the amount of GIT1 and βPIX in FAs, and increased the total amount of the βPIX protein in ECs. In conclusion, RhoJ localises to FAs, promotes EC migration, regulates FA and SF numbers, interacts with βPIX and GIT1 and is activated by pro-angiogenic factors.
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Norville, Phillip. "Small colony variants in Staphylococcus aureus and other species : antibiotic selection, antimicrobial susceptibility, and biofilm formation". Thesis, Cardiff University, 2011. http://orca.cf.ac.uk/17713/.

Testo completo
Abstract (sommario):
Staphylococcus aureus is one of the leading causes of hospital acquired infections. The ability of S. aureus to acquire resistance to a diverse range of antimicrobial compounds, results in limited treatment options, particularly in methicillin-resistant S. aureus. A mechanism by which S. aureus develops reduced susceptibility to antimicrobials is through the formation of small colony variants (SCVs). Reduced antimicrobial susceptibility in S. aureus SCVs is not related to ‘classical’ mechanisms of resistance, but occurs as a direct result of the development of the SCV phenotype. S. aureus SCVs are frequently associated with defects in the bacterial electron transport chain and these defects are responsible for the characteristics associated with the SCV phenotype. This study aimed to investigate and characterise the selection of S. aureus SCVs in the presence of various antibiotics and also to examine their biofilm forming capabilities. Four members of the aminoglycoside family of antibiotics were shown to select for S. aureus SCVs. In addition, a broad range (X 0.25 MIC – X 4 MIC) of aminoglycoside concentrations were shown to select for S. aureus SCVs. Characterisation of these isolates revealed that differences in auxotrophy, biochemical profiles, carotenoid production, haemolysis, levels of intracellular ATP, mutation frequency and reversion rate were present. Members of the tetracycline family of antibiotics were also shown to select for S. aureus SCVs. Tetracycline selected S. aureus SCVs show attenuated catalase, coagulase and heamolysis activity and reduced production of extracellular DNase and lipase and reduced susceptibility to various antimicrobial agents. As SCVs have been linked to persistent and recurrent infections their ability to form biofilms was also investigated. A range of S. aureus SCVs isolated from various backgrounds were shown to form greater biofilms in comparison to parent strains, which was attributed to increased production of polysaccharide intracellular adhesin. In addition S. aureus SCV biofilms displayed a more pronounced reduction in antimicrobial susceptibility, which was attributed to a reduction in antimicrobial penetration through SCV biofilms. Limited discovery of novel antibiotics in recent years and the observation that S. aureus SCVs can be selected for by various antimicrobial compounds highlights the need for novel antimicrobial compounds. Accordingly, an investigation into the susceptibility of S. aureus to various plant compounds was undertaken. Both S. aureus SCVs and parent strains showed susceptibility to five plant antimicrobials tested, of which SCVs were more susceptible to cinnamon bark, green tea and oregano. Resistance to these plant antimicrobials could not be induced and synergistic relationships between certain plant antimicrobials and antibiotics were demonstrated. Finally, formation of SCVs in bacterial species other than S. aureus was examined. Gentamicin induced SCV selection in Escherichia coli, Pseudomonas aeruginosa and S. epidermidis as well as chloroamphenicol and ciprofloxacin in E. coli and tetracycline in S. epidermidis. SCVs from these bacterial species shared common characteristics associated with the SCV phenotype including altered growth and biochemical profiles, auxotrophy for compounds involved in electron transport, reduction in expression of virulence factors and reduced antimicrobial susceptibility. Additionally all SCVs showed an increased capacity to form biofilms. The ability of certain antibiotics to select for SCVs and their increased capacity to form biofilms suggest that SCV are an important adaptation to aid survival and persistence in times of stress. Reduced susceptibility to commonly used antibiotics in SCVs signifies that the development of new antimicrobial compounds is required. Harnessing naturally occurring plant antimicrobials and their synergistic relationship with antibiotics may offer a novel approach to treating antibiotic resistant infections whilst overcoming antibiotic selection for SCVs.
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Masjedi, Mohsen. "Physiological inflammation of the small intestine during weaning in the rat /". Title page, table of contents and summary only, 1998. http://web4.library.adelaide.edu.au/theses/09PH/09phm3973.pdf.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Ismail, Jaidaa. "Testing BCL2A1 Small Molecule Inhibitors in Fluorescence Polarization Assays". University of Cincinnati / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1595846503840908.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Chen, Xi. "Design and synthesis of small molecule inhibitors of coagulation FXIIa". Thesis, University of Nottingham, 2018. http://eprints.nottingham.ac.uk/53481/.

Testo completo
Abstract (sommario):
Blood coagulation factors, factor XII (FXII), plasma kallikrein (PK), factor XI (FXI), and high-molecular-weight kininogen (HMWK), are four proteins that are involved in the plasma contact activation system (CAS) and kallikrein-kinin system (KKS). FXII is the initiation point of the intrinsic pathway of blood coagulation and is also the link between procoagulant and proinflammatory reactions. A number of inhibitors for blood coagulation factors have been approved for clinical usage. These inhibitors not only show inhibitory activities against thrombosis, but also disrupt haemostasis causing excessive bleeding. Contrasted with other coagulation proteases, the deficiency in FXII, instead of causing excessive bleeding, only reduces thrombus formation in blood coagulation. This unique property has made FXII a potential target for the treatments of thrombosis. FXII inhibitors such as aptamers, antibodies and peptides have been reported. Due to their limitations, some inhibitors have poor selectivity or weak binding affinity. Some inhibitors (biopolymers) have pharmaceutical problems. A chemically synthesised FXII inhibitor, with high selectivity is of great importance. The current lack of small molecule FXII inhibitors is limiting efforts to fully understand and validate FXII as a drug target. This project aims to design and synthesise a novel class of 1, 2, 5-tri-substituted benzene urea compounds as potent FXIIa inhibitors. Using Lossen rearrangement, a total of 134 urea compounds were chemically synthesised in this project. All compounds were biologically tested against activated factor XII (FXIIa). Detailed structure-activity relationships (SAR) information was obtained by functional enzyme assays (FXIIa). The range of activity of urea lead compounds in series is between 5.7 μM and 182.0 μM. The urea compound (127) bearing a benzamidine functional group (4-((2-(3-(2-(Pyrrolidin-1-yl)-5-(trifluoromethyl)phenyl)ureido)ethyl)sulfonamido)benzamidine) had the most potent inhibition against FXIIa (α-FXIIa: 5.7 ± 0.1 μM; β-FXIIa: 5.9 ± 0.2 μM). The top 25 most potent inhibitors were selected and were biologically tested for their selectivity between FXIIa and activated factor X (FXa). There are four out of 25 compounds showed their activities against FXa in a range between 1.9 ± 0.6 μM and 141.7 ± 16.5 μM. The selectivity between FXa and FXIIa was rationalised by serine protease-ligand crystal structure (FXa-rivaroxaban complex) and computational modelling simulation (FXIIa-hybrid model). In conclusion, potent FXIIa inhibitors were identified. The present study provides a rationale for further development of FXIIa inhibitors for the treatment of thrombosis and the investigation of selectivity between FXIIa and factor Xa (FXa).
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Hartlage, Alex S. "T CELL IMMUNITY IN A SMALL ANIMAL SURROGATE OF HEPATITIS C VIRUS INFECTION". The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1584101091684162.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Moghaddami, Mahin. "Characterization of isolated lymphoid aggregations in the mucosa of the small intestine /". Title page, abstract and contents only, 1999. http://web4.library.adelaide.edu.au/theses/09PH/09phm6959.pdf.

Testo completo
Abstract (sommario):
Thesis (Ph.D.)--University of Adelaide, Dept. of Microbiology and Immunology, 1999.
Errata & addenda tipped in behind back end paper. Copies of author's previously published articles in pocket on back end-paper. Bibliography: leaves 147-194.
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Guo, Weihong, e 郭衛紅. "The immune mechanisms and novel immunosuppressive approaches in experimental small bowel transplantation". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2001. http://hub.hku.hk/bib/B3124175X.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Jezierski, Anna W. "Crosstalk of E-cadherin and small GTPase Rap1 coordinates the clonality of human embryonic stem cells". Thesis, University of Ottawa (Canada), 2009. http://hdl.handle.net/10393/28089.

Testo completo
Abstract (sommario):
Human embryonic stem cells (hESCs) are pluripotent cells, capable of giving rise to all three germ layers while maintaining their ability to proliferate indefinitely in culture. However, little is known regarding the microenvironmental cues that govern hESC self-renewal, particularly the challenge of clonal propagation following single cell dissociation. Increasing evidence suggests that intracellular pathways that coordinate E-cadherin-mediated cell-cell and integrin-mediated cell-ECM adhesions, are indispensable for the maintenance and self-renewal of hESCs. I have demonstrated that a potential crosstalk between small GTPase Rap1 and E-cadherin coordinates the colony formation and self-renewal of hESCs. I demonstrate that Rap1 expression kinetically decreases following the dissociation-induced disruption of E-cadherin mediated cell-cell adhesion compared to adherent hESCs. Inhibition of Rap1 with GGTI-298 completely abolishes the colony formation and self-renewal capacity of dissociated hESCs, whereas ectopic expression of Rap1 augments colony formation and survival. Addition of a potential activator of Rap1, Bombesin, inhibited dissociation-induced loss of Rap1 in hESCs and subsequently enhanced their survival, clonal propagation and self-renewal. Given the considerable extracellular and intracellular activators of Rap1, this work may provide an intracellular target to improve hESCs maintenance and self-renewal and provide new insights into the mechanisms regulating clonality and self-renewal.
Gli stili APA, Harvard, Vancouver, ISO e altri

Libri sul tema "Small Immunology"

1

R, Grant David, e Wood Richard F. M, a cura di. Small bowel transplantation. London: E. Arnold, 1994.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

N, Marsh Michael, a cura di. Immunopathology of the small intestine. Chichester [West Sussex]: Wiley, 1987.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Edward, Baker. Small animal allergy: A practical guide. Philadelphia: Lea & Febiger, 1990.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

MicroRNAs and the immune system: Methods and protocols. New York, NY: Humana Press, 2010.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Ophthalmic Immunology and Immune-Mediated Disease: Small Animal Practice. Elsevier - Health Sciences Division, 2008.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Immunology and Vaccination, an Issue of Veterinary Clinics of North America: Small Animal Practice. Elsevier - Health Sciences Division, 2018.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Small Bowel Transplantation (Hodder Arnold Publication). A Hodder Arnold Publication, 1996.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

E, Deltz, Thiede Arnulf e Hamelmann H, a cura di. Small-bowel transplantation: Experimental and clinical fundamentals. Berlin: Springer-Verlag, 1986.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Deltz, Eberhard, e Arnluf Thiede. Small-Bowel Transplantation: Experimental and Clinical Fundamentals. Springer-Verlag, 1987.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Deltz, Eberhard. Small-Bowel Transplantation: Experimental and Clinical Fundamentals. Springer, 2011.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Capitoli di libri sul tema "Small Immunology"

1

McCracken, Melissa N., e Owen N. Witte. "PET Imaging in Immunology". In Small Animal Imaging, 821–44. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-42202-2_33.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Lee, Jason T., Evan D. Nair-Gill, Brian A. Rabinovich, Caius G. Radu e Owen N. Witte. "Imaging in Immunology Research". In Small Animal Imaging, 565–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-12945-2_36.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Judge, Thomas. "The Small Bowel in Immunology". In Clinical Imaging of the Small Intestine, 29–37. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-0-387-21565-5_3.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Gassel, A. M., e A. Greiner. "Mucosal Immunology of the Small Bowel". In Organtransplantation in Rats and Mice, 417–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-72140-3_42.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Esses, Steven J., e Lloyd Mayer. "Mucosal Immunology of the Intestine". In Practical Gastroenterology and Hepatology: Small and Large Intestine and Pancreas, 23–27. Oxford, UK: Wiley-Blackwell, 2010. http://dx.doi.org/10.1002/9781444328417.ch4.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Haldar, S., Ch Beatty e C. M. Croce. "Bcl-2α Encodes a Novel Small Molecular Weight GTP Binding Protein". In Progress in Immunology, 479–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-83755-5_63.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Geraldino-Pardilla, Laura, e Jon T. Giles. "Small Molecules Targeted For the Treatment of Rheumatoid Arthritis". In Encyclopedia of Medical Immunology, 1088–92. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-0-387-84828-0_362.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Greney, Ph, E. Candolfi e T. T. Kien. "Specific IgA response in small intestine during experimental toxoplasmosis". In Advances in Mucosal Immunology, 829–30. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-1848-1_261.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Goody, Roger S., e Aymelt Itzen. "Modulation of Small GTPases by Legionella". In Current Topics in Microbiology and Immunology, 117–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/82_2013_340.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Lee, Keunsub, e Kan Wang. "Small Noncoding RNAs in Agrobacterium tumefaciens". In Current Topics in Microbiology and Immunology, 195–213. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/82_2018_84.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Atti di convegni sul tema "Small Immunology"

1

Wei, Tzu-Tang, Yi-Ting Lin, Yu-Chin Lin e Ching-Chow Chen. "Abstract A92: Small molecules targeting HMGR and HDAC in colorectal cancer". In Abstracts: AACR Special Conference: Tumor Immunology and Immunotherapy: A New Chapter; December 1-4, 2014; Orlando, FL. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/2326-6074.tumimm14-a92.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Huntington, Kelsey E., Anna Louie, Lanlan Zhou e Wafik S. El-Deiry. "Abstract P036: A high-throughput customized cytokinome screen of colon cancer cell responses to small-molecule oncology drugs". In Abstracts: AACR Virtual Special Conference: Tumor Immunology and Immunotherapy; October 5-6, 2021. American Association for Cancer Research, 2022. http://dx.doi.org/10.1158/2326-6074.tumimm21-p036.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Banerjee, Monali, Sandip Middya, Sourav Basu, Ritesh Shrivastava, Rajib Ghosh, Dharmendra Yadav, Thanilsana Soram et al. "Abstract B43: Novel small-molecule human STING agonists generate robust Type I interferon responses in tumors". In Abstracts: AACR Special Conference on Tumor Immunology and Immunotherapy; October 1-4, 2017; Boston, MA. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/2326-6074.tumimm17-b43.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Islam, Mirazul, Elsa Haniffah Mohamed, Ezalia Esa, Nor Rizan Kamaluddin, Shamsul Mohd Zain, Yuslina Yusoff, Yassen Assenov, Zahurin Mohamed e Zubaidah Zakaria. "Abstract B86: Circulating cytokines, chemokines, and small molecules follow distinct expression patterns in acute myeloid leukemia". In Abstracts: AACR Special Conference on Tumor Immunology and Immunotherapy; October 1-4, 2017; Boston, MA. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/2326-6074.tumimm17-b86.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Huang, Shih-Hsiang, Jin-Yuan Shih e Ching-Chow Chen. "Abstract A49: Acquired resistance of non-small cell lung cancer to EGFR-TKI: Role of AKT3". In Abstracts: AACR Special Conference on Tumor Immunology and Immunotherapy; November 17-20, 2019; Boston, MA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/2326-6074.tumimm19-a49.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Shahoei, Sayyed Hamed, Adam T. Nelson, Madeline A. Henn, Ashley E. Mathews, Joy J. Chen, Varsha Vembar, Liqian Ma, Lionel Apetoh e Erik R. Nelson. "Abstract A93: Macrophage-expressed small heterodimer partner impairs expansion of regulatory T cells and enhances immune checkpoint inhibition". In Abstracts: AACR Special Conference on Tumor Immunology and Immunotherapy; November 17-20, 2019; Boston, MA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/2326-6074.tumimm19-a93.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Sen, Triparna, Limo Chen, Bertha Leticia Rodriguez, Yongbin Yang, You Hong Fan, Catherine Allison Stewart, Bonnie Glisson et al. "Abstract B72: Combining immune checkpoint inhibition and DNA damage repair (DDR) targeted therapy in small cell lung cancer (SCLC)". In Abstracts: AACR Special Conference on Tumor Immunology and Immunotherapy; October 20-23, 2016; Boston, MA. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/2326-6074.tumimm16-b72.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Yokoyama, Yumi, Erin D. Lew, Colin Walsh, Jack Lee, Joanne Oh, Elizabeth A. Tindall, Robin Nevarez et al. "Abstract A37: Immuno-oncological efficacy of RXDX-106, a novel TAM (TYRO3, AXL, MER) family small-molecule kinase inhibitor". In Abstracts: AACR Special Conference on Tumor Immunology and Immunotherapy; October 1-4, 2017; Boston, MA. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/2326-6074.tumimm17-a37.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Cho, Jae-Won, Min Hee Hong, Sang-Jun Ha, Young-Joon Kim, Insuk Lee e Hye Ryun Kim. "Abstract A4: DNA methylation profiles associated with response to anti-PD-1 immunotherapy in non-small cell lung cancer". In Abstracts: AACR Special Conference on Tumor Immunology and Immunotherapy; November 17-20, 2019; Boston, MA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/2326-6074.tumimm19-a4.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Oka, Mikio, Koji Kurose, Yoshihiro Ohue, Takahiro Karasaki, Junichiro Futami, Takeshi Masuda, Masaaki Fukuda et al. "Abstract B38: Immunologic monitoring markers of clinical responses to anti-PD-1 therapy for non-small cell lung cancer". In Abstracts: AACR Special Conference on Tumor Immunology and Immunotherapy; November 17-20, 2019; Boston, MA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/2326-6074.tumimm19-b38.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!

Vai alla bibliografia