Letteratura scientifica selezionata sul tema "Slag"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Slag".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Slag"
Zhang, Kaitian, Jianhua Liu e Heng Cui. "Investigation on the Slag-Steel Reaction of Mold Fluxes Used for Casting Al-TRIP Steel". Metals 9, n. 4 (1 aprile 2019): 398. http://dx.doi.org/10.3390/met9040398.
Testo completoLi, Qi Nan, Guo Jun Ma, Xiang Zhang e Xun Cai. "Characteristics of Metallurgical Waste Slag and its Heating Behavior in a Microwave Field". Key Engineering Materials 680 (febbraio 2016): 574–79. http://dx.doi.org/10.4028/www.scientific.net/kem.680.574.
Testo completoGupta, Avishek Kumar, Matti Aula, Jouni Pihlasalo, Pasi Mäkelä, Marko Huttula e Timo Fabritius. "Preparation of Synthetic Titania Slag Relevant to the Industrial Smelting Process Using an Induction Furnace". Applied Sciences 11, n. 3 (27 gennaio 2021): 1153. http://dx.doi.org/10.3390/app11031153.
Testo completoZhao, Qiang, Lang Pang e Dengquan Wang. "Adverse Effects of Using Metallurgical Slags as Supplementary Cementitious Materials and Aggregate: A Review". Materials 15, n. 11 (26 maggio 2022): 3803. http://dx.doi.org/10.3390/ma15113803.
Testo completoLong, Xiao, Wenbo Luo, Guohong Lu, Falou Chen, Xiaoning Zheng, Xingfan Zhao e Shaolei Long. "Iron Removal from Metallurgical Grade Silicon Melts Using Synthetic Slags and Oxygen Injection". Materials 15, n. 17 (1 settembre 2022): 6042. http://dx.doi.org/10.3390/ma15176042.
Testo completoLiu, Xingbei, Chao Zhang, Huanan Yu, Guoping Qian, Xiaoguang Zheng, Hongyu Zhou, Lizhang Huang, Feng Zhang e Yixiong Zhong. "Research on the Properties of Steel Slag with Different Preparation Processes". Materials 17, n. 7 (28 marzo 2024): 1555. http://dx.doi.org/10.3390/ma17071555.
Testo completoPotysz, Anna, Bartosz Mikoda e Michał Napieraj. "(Bio)dissolution of Glassy and Diopside-Bearing Metallurgical Slags: Experimental and Economic Aspects". Minerals 11, n. 3 (3 marzo 2021): 262. http://dx.doi.org/10.3390/min11030262.
Testo completoZhou, Sheng Bo, Ai Qin Shen e Geng Fei Li. "Interaction between Slag and Clinker during Cement Hydration Process". Advanced Materials Research 857 (dicembre 2013): 70–74. http://dx.doi.org/10.4028/www.scientific.net/amr.857.70.
Testo completoPfeiffer, Andreas, Kathrin Thiele, Gerald Wimmer e Johannes Schenk. "Laboratory Scale Evaluation of the Slag Foaming Behavior". IOP Conference Series: Materials Science and Engineering 1309, n. 1 (1 maggio 2024): 012007. http://dx.doi.org/10.1088/1757-899x/1309/1/012007.
Testo completoJiang, Dongbin, Xiaoxuan Peng, Ying Ren, Wen Yang e Lifeng Zhang. "Water modeling on slag entrainment in the slab continuous casting mold". Metallurgical Research & Technology 119, n. 6 (2022): 601. http://dx.doi.org/10.1051/metal/2022083.
Testo completoTesi sul tema "Slag"
Nassyrov, Dmitri. "Slag solidification modeling". Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=119538.
Testo completoDeux modèles capables de prédire les diagrammes temps-température-transformation (TTT) pour des oxydes et oxyfluorures liquides ont été développés. Un des modèles est basé sur l'équation de Johnson-Mehl-Avrami-Kolmogorov (JMAK), et l'autre – utilisant la théorie classique de la nucléation (TCN). La base de données la plus récente a été utilisée pour calculer les propriétés thermodynamiques des phases liquides et solides. Le modèle basé sur l'équation JMAK a démontré un accordement avec les données expérimentales bien meilleur que la TCN. Le modèle développé dans cette étude peut être utilisé pour prédire des diagrammes TTT pour les oxydes contenant pas plus que 50 % massique de SiO2 et pour quelques oxyfluorures.
Sulasalmi, P. (Petri). "Modelling of slag emulsification and slag reduction in CAS-OB process". Doctoral thesis, Oulun yliopisto, 2016. http://urn.fi/urn:isbn:9789526214160.
Testo completoTiivistelmä CAS-OB -prosessi on sulametallurgiassa käytettävä senkkakäsittelyprosessi, joka on kehitetty teräksen kemialliseen lämmittäseen ja seostukseen. CAS-OB-prosessin pääprosessivaiheet ovat lämmitysvaihe, mahdollinen seostusvaihe ja kuonan pelkistysvaihe. CAS-OB -prosessilla tavoitellaan teräksen koostumuksen homogenisointiin ja lämpötilan kontrollointiin. Tässä tutkimuksessa kehitettiin matemaattinen reaktiomalli CAS-OB -prosessin kuonan pelkistysvaiheen kuvaamiseen. Kuonan pelkistys tapahtuu senkan pohjassa olevien huuhtelutiilien avulla suoritettavan voimakkaan kaasuhuuhtelun avulla. Pohjahuuhtelu aiheuttaa kiertävän teräsvirtauksen senkassa. Teräsvirtaus irrottaa teräksen päällä olevasta kuonakerroksesta pisaroita ja kuonan ja teräksen välinen reaktiopinta-ala kasvaa voimakkaasti. Tämä tarjoaa suotuisat olosuhteet pelkistysreaktiolle senkassa. Pelkistysreaktioiden mallintamiseksi tässä työssä kehitettiin CFD-simulaatioiden avulla alimalli, jonka avulla voidaan kuvata teräksen ja kuonan välisen pinta-alan suuruutta. Pelkistysvaiheen mallissa huomioidaan reaktioiden lisäksi myös systeemissä tapahtuva lämmösiirto. Pelkistysmalli validoitiin mittausdatalla, joka hankittiin SSAB Raahen terässulaton CAS-OB -asemalla järjestetyssä validointikampanjassa. Tutkimuksessa havaittiin, että malli kykenee hyvin ennustamaan teräksen ja kuonan koostumuksen sekä teräksen lämpötilan
Muhmood, Luckman. "Investigations of thermophysical properties of slags with focus on slag-metal interface". Doctoral thesis, KTH, Materialens processvetenskap, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-26611.
Testo completoQC 20101130
Isaksson, Jenny. "Slag Cleaning of a Reduced Iron Silicate Slag by Settling : Influence of Process Parameters and Slag Modification on Copper Content". Licentiate thesis, Luleå tekniska universitet, Mineralteknik och metallurgi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-84798.
Testo completoWang, Shao-Dong. "Alkaline activation of slag". Thesis, Imperial College London, 1995. http://hdl.handle.net/10044/1/7767.
Testo completoNg, Ka Wing 1965. "Skimming of fluid slag". Thesis, McGill University, 2000. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=33340.
Testo completoBerryman, Eleanor. "Carbonation of steel slag". Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=110434.
Testo completoL'industrie du fer et de l'acier est en pleine croissance et sa production mondiale a augmenté de 65% au cours des dix dernières années (World Steel Association, 2012). Malheureusement, elle est également responsable d'un quart des émissions industrielles de CO2 ce qui en fait la plus importante source industrielle de CO2 atmosphérique (International Energy Agency (IEA), 2007).La carbonatation minérale fournit une méthode robuste pour la séquestration permanente du CO2 sous une forme écologiquement inerte. La larnite (Ca2SiO4), constituant principal des scories d'acier, réagit aisément avec le CO2 aqueux (Santos et al., 2009). Par conséquent, sa carbonatation offre une importante occasion de réduire à la source les émissions de CO2. Un avantage potentiel supplémentaire de ce traitement est de rendre les scories d'acier convenables pour le recyclage. Cette étude examine l'impact de la température, le flux molaire surfacique du fluide carbonaté, et d'un gradient de réaction sur la dissolution et la carbonatation des scories d'acier. Elle s'inscrit dans une étude plus large visant à déterminer les conditions optimisant la conversion de la larnite, et d'autres silicates de calcium, à la calcite.Des expériences ont été menées sur des grains de scories d'acier d'un diamètre de 2 à 3 mm fournis par Tata Steel RD&T. Un mélange de CO2-H2O a été pompé à travers un réacteur continu contenant ces grains et maintenu à une température entre 120°C et 200°C, une pression de 250 bar et à des flux molaires surfaciques de 0.8 à 6 mmol/cm2min. Chaque expérience a duré de 3 à 7 jours. Le fluide CO2-H2O a réagi avec les grains de scories d'acier et a formé des minéraux de carbonate de calcium contenant du phosphore. À flux molaire surfacique élevé, soit 6 mL/cm2min, ces phases sont dissoutes aux bords des grains, laissant place à une bordure poreuse d'oxydes d'aluminum et de fer. Une augmentation de la température a augmenté la vitesse de cette réaction. A valeur intermédaire de flux molaire surfacique, 0.8 mL/cm2min, le degré de carbonatation a augmenté. Au lieu laisser des bordures poreuses d'oxydes, les minéraux de calcium primaires en marge des grains ont plutôt été remplacés par des phases de calcium carbonate contenant du phosphore. En plus, l'usage d'un réacteur plus long a créé un gradient de réaction et maintenu la supersaturation du fluide relative au carbonate de calcium qui a enrobé les grains. Les scories d'acier exposées au fluide dans un réacteur discontinu (sans flux de fluide) ont été moins carbonatées; la dissolution non-congruente de la scorie a pris place suivie par l'enrobage des grains de scories par le carbonate, et ce dernier a réduit la surface de réaction de la scorie avec le fluide.Les résultats de cette étude démontrent que la carbonatation par le CO2 aqueux des scories d'acier à granulométrie relativement grossière est possible et qu'elle peut être optimisée en variant le flux molaire surfacique du fluide. Les expériences de ce type contribueront à la réduction éventuelle des émissions industrielles globales de CO2.
Ekengård, Johan. "Aspects on slag/metal equilibrium calculations and metal droplet characteristics in ladle slags". Licentiate thesis, KTH, Materials Science and Engineering, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-1788.
Testo completoIn the present work the mixing between the metal and slagphase during the ladle refining process from tapping from theelectric arc furnace to casting in two different Swedish steelplants has been studied.
Three slag models and the sulphur-oxygen equilibrium betweenslag and steel was used together with the dilute solution modelfor the liquid steel phase to predict the equilibrium oxygenactivity in steel bulk and metal droplets in top slag inequilibrium with the top slag. The predicted oxygen activitieswere compared with measured oxygen activities from the steelbulk. The results show significant discrepancies between thecalculated and measured oxygen activities and the reasons forthe differences are discussed.
Metal droplet distribution in slag samples have also beendetermined using classification according to the Swedishstandard SS111116. It was found that most metal droplets arefound in the slag samples taken before vacuum degassing. Thetotal area between steel droplets and slag has been determinedto be 3 to 14 times larger than the projected flat interfacearea between top slag and steel. The effect of slag viscosityand reactions between steel and slag on the metal dropletformation in slags is also discussed.
The chemical composition of the metal droplets in the topslag was determined and possible reactions taking place betweenthe steel droplets and the slag was studied. Differencesbetween steel droplet compositions and the bulk steelcomposition are discussed. The results show significantdifferences between steel droplet and bulk steelcomposition.
Key words:oxygen activity, metal droplets, sulphur,slag, ladle, refining, distribution.
Johnston, Murray. "Thermodynamics of selenium and tellurium in molten metallurgical slags and alloys". University of Western Australia. School of Biomedical, Biomolecular and Chemical Sciences, 2007. http://theses.library.uwa.edu.au/adt-WU2008.0064.
Testo completoGautier, Annaig. "Luminescence dating of archaeometallurgical slag". Thesis, University of Oxford, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.326805.
Testo completoLibri sul tema "Slag"
1947-, Hare David, a cura di. Slag. London]: Bloomsbury, 2013.
Cerca il testo completoPrunty, Andersen. Slag attack. Portland, OR: Eraserhead Press, 2010.
Cerca il testo completoZamalloa, V. Manuel. Slag foaming. Ottawa: National Library of Canada, 1992.
Cerca il testo completoEisenhüttenleute, Verein Deutscher, e Verein Deutscher Eisenhüttenleute. Ausschuss für Metallurgische Grundlagen, a cura di. Slag atlas. Düsseldorf: Verlag Stahleisen, 1995.
Cerca il testo completoSmirnova, L. A., dokt. tekhn. nauk., Deri͡a︡bina A. A e Uralʹskiĭ nauchno-issledovatelʹskiĭ institut chernykh metallov., a cura di. Shlaki chernoĭ metallurgii, ikh pererabotka i ispolʹzovanie. Sverdlovsk: Uralʹskiĭ nauchno-issl. in-t chernykh metallov, 1990.
Cerca il testo completoBril, Martin. De Franse slag. Amsterdam: Uitgeverij 521, 2004.
Cerca il testo completoDorsman, Leen. 1600, slag bij Nieuwpoort. Hilversum: Verloren, 2000.
Cerca il testo completoDudley, Anton. Slag heap: A play. New York: Playscripts, Inc., 2011.
Cerca il testo completoWaa, Frits van der, 1954-, a cura di. De slag van Andriessen. Amsterdam: De Bezige Bij, 1993.
Cerca il testo completoVries, Izak De. Kom slag ʼn bees. Kaapstad: Tafelberg, 1998.
Cerca il testo completoCapitoli di libri sul tema "Slag"
Ying, Qu, e Xu Kuangdi. "Slag". In The ECPH Encyclopedia of Mining and Metallurgy, 1–2. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-0740-1_1171-1.
Testo completoGooch, Jan W. "Weld Slag". In Encyclopedic Dictionary of Polymers, 809. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_12782.
Testo completoShamsuddin, Mohammad. "Metallurgical Slag". In Physical Chemistry of Metallurgical Processes, Second Edition, 107–48. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-58069-8_4.
Testo completoThanh, H. T., M. J. Tapas, J. Chandler e V. Sirivivatnanon. "Creep of Slag Blended Cement Concrete with and Without Activator". In Lecture Notes in Civil Engineering, 177–85. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-3330-3_19.
Testo completoLv, Xuewei, e Zhiming Yan. "Slag Structure of High Alumina Blast Furnace Slag". In High Temperature Physicochemical Properties of High Alumina Blast Furnace Slag, 43–76. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3288-5_3.
Testo completoIguchi, Manabu, e Olusegun J. Ilegbusi. "Slag–Metal Interaction". In Modeling Multiphase Materials Processes, 215–46. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7479-2_6.
Testo completoLiu, Liu, e Xu Kuangdi. "Slag Splashing Technology". In The ECPH Encyclopedia of Mining and Metallurgy, 1–2. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-0740-1_993-1.
Testo completoLubyanoi, Dmitriy, Evgeniy Kuzin, Evgeniy Zvarych, Dmitriy Malyshkin e Olga Semenova. "Transportation of Liquid Slag in Cast Iron Slag Bowls". In Fundamental and Applied Scientific Research in the Development of Agriculture in the Far East (AFE-2022), 1–10. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-37978-9_1.
Testo completoPerederiy, llya, Vladimiros G. Papangelakis e Indje Mihaylov. "Nickel Smelter Slag Microstructure and Its Effect on Slag Leachability". In T.T. Chen Honorary Symposium on Hydrometallurgy, Electrometallurgy and Materials Characterization, 225–37. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118364833.ch20.
Testo completoHe, Mingsheng, Bowen Li, Wangzhi Zhou, Huasheng Chen, Meng Liu e Long Zou. "Preparation and Characteristics of Steel Slag Ceramics from Converter Slag". In The Minerals, Metals & Materials Series, 13–20. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72484-3_2.
Testo completoAtti di convegni sul tema "Slag"
Hamama, Ayoub, M. Harrami, M. Saadi, A. Assani e Adeljebbar Diouri. "Physico-Chemical Characterization of the Electric Arc Furnace Slag (EAFS) of the Sonasid-Jorf Steelworks - Morocco". In 4th International Conference on Bio-Based Building Materials. Switzerland: Trans Tech Publications Ltd, 2022. http://dx.doi.org/10.4028/www.scientific.net/cta.1.691.
Testo completoGudenau, H. W., H. Hoberg e A. Mayerhofer. "Hot Gas Cleaning for Combined Cycle Based on Pressurized Coal Combustion". In ASME 1994 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1994. http://dx.doi.org/10.1115/94-gt-417.
Testo completoLiu, Sheng, e Yingli Hao. "A Critical Review of Slag Properties of Chinese Coals for Entrained Flow Coal Gasifier". In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-43307.
Testo completoSun, Xiaowei, Wanyang Niu e Jingbo Zhao. "Performance Research on Slag-Steel Slag Based Composite Portland Cement". In 2015 International Conference on Advanced Engineering Materials and Technology. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/icaemt-15.2015.142.
Testo completoDunster, A. "The use of blastfurnace slag and steel slag as aggregates". In Proceedings of the Fourth European Symposium on Performance of Bituminous and Hydraulic Materials in Pavements, Bitmat 4. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2017. http://dx.doi.org/10.4324/9780203743928-38.
Testo completoLee, Junesuk, Geon-Tae Ahn, Byoung-Ju Yun e Soon-Yong Park. "Slag Removal Path Estimation by Slag Distribution and Deep Learning". In 15th International Conference on Computer Vision Theory and Applications. SCITEPRESS - Science and Technology Publications, 2020. http://dx.doi.org/10.5220/0008944602460252.
Testo completoEne, Nicoleta Mariana, Carmen Răcănel e Adrian Burlacu. "The study of moisture susceptibility for asphalt mixtures containing blast furnace slags". In 6th International Conference on Road and Rail Infrastructure. University of Zagreb Faculty of Civil Engineering, 2021. http://dx.doi.org/10.5592/co/cetra.2020.1049.
Testo completoYatsenko, E. A., B. M. Goltsman, V. A. Smolii e A. S. Kosarev. "Foamed slag glass - eco-friendly insulating material based on slag waste". In 2015 IEEE 15th International Conference on Environment and Electrical Engineering (EEEIC). IEEE, 2015. http://dx.doi.org/10.1109/eeeic.2015.7165270.
Testo completoYanzhao, L., J. Chenxi, W. Leichuan, S. Wei, C. Yang e T. Zhihong. "Double Slag Modification Method for Reducing Slag Oxidation of IF Steel". In MS&T17. MS&T17, 2017. http://dx.doi.org/10.7449/2017/mst_2017_622_627.
Testo completoYanzhao, L., J. Chenxi, W. Leichuan, S. Wei, C. Yang e T. Zhihong. "Double Slag Modification Method for Reducing Slag Oxidation of IF Steel". In MS&T17. MS&T17, 2017. http://dx.doi.org/10.7449/2017mst/2017/mst_2017_622_627.
Testo completoRapporti di organizzazioni sul tema "Slag"
Gorman, Patrick K. Slag recycling of irradiated vanadium. Office of Scientific and Technical Information (OSTI), aprile 1995. http://dx.doi.org/10.2172/115735.
Testo completoSolomon, P. R., e J. R. Markham. Radiative properties of ash and slag. Office of Scientific and Technical Information (OSTI), ottobre 1989. http://dx.doi.org/10.2172/7152112.
Testo completoSolomon, P. R., e J. R. Markham. Radiative properties of ash and slag. Office of Scientific and Technical Information (OSTI), gennaio 1990. http://dx.doi.org/10.2172/7169639.
Testo completoSolomon, P. R., e J. R. Markham. Radiative properties of ash and slag. Office of Scientific and Technical Information (OSTI), marzo 1990. http://dx.doi.org/10.2172/7249623.
Testo completoSolomon, P. R., e J. R. Markham. Radiative properties of ash and slag. Office of Scientific and Technical Information (OSTI), gennaio 1989. http://dx.doi.org/10.2172/7008009.
Testo completoSolomon, P. R., J. R. Markham, P. E. Best e Zhen-Zhong Yu. Radiative properties of ash and slag. Office of Scientific and Technical Information (OSTI), ottobre 1990. http://dx.doi.org/10.2172/7054651.
Testo completoVerian, Kho Pin, Parth Panchmatia e Jan Olek. Investigation of Use of Slag Aggregates and Slag Cements in Concrete Pavements to Reduce the Maintenance Cost. Purdue University, maggio 2018. http://dx.doi.org/10.5703/1288284316362.
Testo completoYildirim, Irem, e Monica Prezzi. Use of Steel Slag in Subgrade Applications. West Lafayette, Indiana: Purdue University, 2011. http://dx.doi.org/10.5703/1288284314275.
Testo completoMcDaniel, E. (Immobilization of technetium in blast furnace slag). Office of Scientific and Technical Information (OSTI), novembre 1989. http://dx.doi.org/10.2172/5385009.
Testo completoRudisill, T. S., J. H. Gray, D. G. Karraker e G. T. Chandler. Canyon dissolution of sand, slag, and crucible residues. Office of Scientific and Technical Information (OSTI), dicembre 1997. http://dx.doi.org/10.2172/574512.
Testo completo