Articoli di riviste sul tema "Single-Electron physics"

Segui questo link per vedere altri tipi di pubblicazioni sul tema: Single-Electron physics.

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "Single-Electron physics".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.

1

Osborne, I. S. "APPLIED PHYSICS: Single-Electron Shuttle". Science 293, n. 5535 (31 agosto 2001): 1559b—1559. http://dx.doi.org/10.1126/science.293.5535.1559b.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

KASTNER, M. A. "THE PHYSICS OF SINGLE ELECTRON TRANSISTORS". International Journal of High Speed Electronics and Systems 12, n. 04 (dicembre 2002): 1101–33. http://dx.doi.org/10.1142/s0129156402001940.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
The single electron transistor (SET) is a nanometer-size device that turns on and off again every time one electron is added to it. In this article, the physics of the SET is reviewed. The consequences of confining electrons to a small region of space are that both the charge and energy are quantized. We review how the charge states and energy states of the confined electrons, sometimes called an artificial atom, are measured, and how the precision of these measurements depends on temperature. We also discuss the coupling of electrons inside the artificial atom to those in the leads of the SET, which results in the Kondo effect. We review measurements of the Kondo effect, which demonstrate that the Anderson Hamiltonian provides a quantitative description of the SET.
3

Kastner, M. A., e D. Goldhaber-Gordon. "Kondo physics with single electron transistors". Solid State Communications 119, n. 4-5 (luglio 2001): 245–52. http://dx.doi.org/10.1016/s0038-1098(01)00106-5.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Kobayashi, Shun-ichi. "Fundamental Physics of Single Electron Transport". Japanese Journal of Applied Physics 36, Part 1, No. 6B (30 giugno 1997): 3956–59. http://dx.doi.org/10.1143/jjap.36.3956.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Dempsey, Kari J., David Ciudad e Christopher H. Marrows. "Single electron spintronics". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, n. 1948 (13 agosto 2011): 3150–74. http://dx.doi.org/10.1098/rsta.2011.0105.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Single electron electronics is now well developed, and allows the manipulation of electrons one-by-one as they tunnel on and off a nanoscale conducting island. In the past decade or so, there have been concerted efforts in several laboratories to construct single electron devices incorporating ferromagnetic components in order to introduce spin functionality. The use of ferromagnetic electrodes with a non-magnetic island can lead to spin accumulation on the island. On the other hand, making the dot also ferromagnetic introduces new physics such as tunnelling magnetoresistance enhancement in the cotunnelling regime and manifestations of the Kondo effect. Such nanoscale islands are also found to have long spin lifetimes. Conventional spintronics makes use of the average spin-polarization of a large ensemble of electrons: this new approach offers the prospect of accessing the quantum properties of the electron, and is a candidate approach to the construction of solid-state spin-based qubits.
6

Seneor, Pierre, Anne Bernand-Mantel e Frédéric Petroff. "Nanospintronics: when spintronics meets single electron physics". Journal of Physics: Condensed Matter 19, n. 16 (5 aprile 2007): 165222. http://dx.doi.org/10.1088/0953-8984/19/16/165222.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Devoret, Michel H., e Christian Glattli. "Single-electron transistors". Physics World 11, n. 9 (settembre 1998): 29–34. http://dx.doi.org/10.1088/2058-7058/11/9/26.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Jamshidnezhad, K., e M. J. Sharifi. "Physics-based analytical model for ferromagnetic single electron transistor". Journal of Applied Physics 121, n. 11 (21 marzo 2017): 113905. http://dx.doi.org/10.1063/1.4978425.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Seike, Kohei, Yasushi Kanai, Yasuhide Ohno, Kenzo Maehashi, Koichi Inoue e Kazuhiko Matsumoto. "Carbon nanotube single-electron transistors with single-electron charge storages". Japanese Journal of Applied Physics 54, n. 6S1 (24 aprile 2015): 06FF05. http://dx.doi.org/10.7567/jjap.54.06ff05.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Wu Fan e Wang Tai-Hong. "Single-electron control by single-electron pump and its stability diagrams". Acta Physica Sinica 52, n. 3 (2003): 696. http://dx.doi.org/10.7498/aps.52.696.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
11

Ginzburg, L. P. "Single-electron Schrödinger equation for many-electron systems". Theoretical and Mathematical Physics 121, n. 3 (dicembre 1999): 1641–53. http://dx.doi.org/10.1007/bf02557209.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
12

Apell, P., e A. Tagliacozzo. "Single Electron Tunneling". physica status solidi (b) 145, n. 2 (1 febbraio 1988): 483–91. http://dx.doi.org/10.1002/pssb.2221450213.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
13

Gurvitz, Shmuel. "Single-electron approach for time-dependent electron transport". Physica Scripta T165 (1 ottobre 2015): 014013. http://dx.doi.org/10.1088/0031-8949/2015/t165/014013.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
14

Nagase, Masao, Seiji Horiguchi, Akira Fujiwara e Yasuo Takahashi. "Microscopic Observations of Single-Electron Island in Si Single-Electron Transistors". Japanese Journal of Applied Physics 42, Part 1, No. 4B (30 aprile 2003): 2438–43. http://dx.doi.org/10.1143/jjap.42.2438.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
15

Monreal, Benjamin. "Single-electron cyclotron radiation". Physics Today 69, n. 1 (gennaio 2016): 70–71. http://dx.doi.org/10.1063/pt.3.3060.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
16

Ji, Xiao-Fan, Zheng Xu, Shuo Cao, Kang-Sheng Qiu, Jing Tang, Xi-Tian Zhang e Xiu-Lai Xu. "Single-ZnO-Nanobelt-Based Single-Electron Transistors". Chinese Physics Letters 31, n. 6 (giugno 2014): 067303. http://dx.doi.org/10.1088/0256-307x/31/6/067303.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
17

Yano, Kazuo, e David K. Ferry. "Single-electron solitons". Superlattices and Microstructures 11, n. 1 (gennaio 1992): 61–64. http://dx.doi.org/10.1016/0749-6036(92)90362-9.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
18

AKAMINE, Yuta, Kazuto FUJIWARA, Bokulae CHO e Chuhei OSHIMA. "New Phenomena in Physics Related with Single-Atom Electron Sources". Journal of the Vacuum Society of Japan 55, n. 2 (2012): 59–63. http://dx.doi.org/10.3131/jvsj2.55.59.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
19

Wingreen, N. S. "PHYSICS: Quantum Many-Body Effects in a Single-Electron Transistor". Science 304, n. 5675 (28 maggio 2004): 1258–59. http://dx.doi.org/10.1126/science.1098302.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
20

Nordlander, Peter, Ned S. Wingreen, Yigal Meir e David C. Langreth. "Kondo physics in the single-electron transistor with ac driving". Physical Review B 61, n. 3 (15 gennaio 2000): 2146–50. http://dx.doi.org/10.1103/physrevb.61.2146.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
21

Tanttu, Tuomo, Alessandro Rossi, Kuan Yen Tan, Kukka-Emilia Huhtinen, Kok Wai Chan, Mikko Möttönen e Andrew S. Dzurak. "Electron counting in a silicon single-electron pump". New Journal of Physics 17, n. 10 (16 ottobre 2015): 103030. http://dx.doi.org/10.1088/1367-2630/17/10/103030.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
22

Kauppinen, J. P., e J. P. Pekola. "Hot electron effects in metallic single electron components". Czechoslovak Journal of Physics 46, S4 (aprile 1996): 2295–96. http://dx.doi.org/10.1007/bf02571139.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
23

Takahashi, Yasuo, Yukinori Ono, Akira Fujiwara e Hiroshi Inokawa. "Silicon single-electron devices". Journal of Physics: Condensed Matter 14, n. 39 (20 settembre 2002): R995—R1033. http://dx.doi.org/10.1088/0953-8984/14/39/201.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
24

Kim, Sang Jin, Yukinori Ono, Yasuo Takahashi e Jung Bum Choi. "Real-Time Observation of Single-Electron Movement through Silicon Single-Electron Transistor". Japanese Journal of Applied Physics 43, n. 10 (8 ottobre 2004): 6863–67. http://dx.doi.org/10.1143/jjap.43.6863.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
25

Boese, D., e H. Schoeller. "Influence of nanomechanical properties on single-electron tunneling: A vibrating single-electron transistor". Europhysics Letters (EPL) 54, n. 5 (giugno 2001): 668–74. http://dx.doi.org/10.1209/epl/i2001-00367-8.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
26

Sui Bing-Cai, Fang Liang e Zhang Chao. "Conductance of single-electron transistor with single island". Acta Physica Sinica 60, n. 7 (2011): 077302. http://dx.doi.org/10.7498/aps.60.077302.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
27

Wang, Y., D. MacKernan, D. Cubero, D. F. Coker e N. Quirke. "Single electron states in polyethylene". Journal of Chemical Physics 140, n. 15 (21 aprile 2014): 154902. http://dx.doi.org/10.1063/1.4869831.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
28

Matsutani, Masahiro, Fujio Wakaya, Sadao Takaoka, Kazuo Murase e Kenji Gamo. "Electron-Beam-Induced Oxidation for Single-Electron Devices". Japanese Journal of Applied Physics 36, Part 1, No. 12B (30 dicembre 1997): 7782–85. http://dx.doi.org/10.1143/jjap.36.7782.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
29

Nishiguchi, Norihiko. "Electron transport properties of C60 single electron transistor". Physica E: Low-dimensional Systems and Nanostructures 18, n. 1-3 (maggio 2003): 247–48. http://dx.doi.org/10.1016/s1386-9477(02)01000-7.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
30

Ciccarello, F., G. M. Palma, M. Zarcone, Y. Omar e V. R. Vieira. "Entanglement controlled single-electron transmittivity". New Journal of Physics 8, n. 9 (27 settembre 2006): 214. http://dx.doi.org/10.1088/1367-2630/8/9/214.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
31

Dasenbrook, David, Joseph Bowles, Jonatan Bohr Brask, Patrick P. Hofer, Christian Flindt e Nicolas Brunner. "Single-electron entanglement and nonlocality". New Journal of Physics 18, n. 4 (26 aprile 2016): 043036. http://dx.doi.org/10.1088/1367-2630/18/4/043036.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
32

Bushev, P. A., J. H. Cole, D. Sholokhov, N. Kukharchyk e M. Zych. "Single electron relativistic clock interferometer". New Journal of Physics 18, n. 9 (27 settembre 2016): 093050. http://dx.doi.org/10.1088/1367-2630/18/9/093050.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
33

Dubas, L. G. "Single-component relativistic electron flux". Technical Physics Letters 32, n. 6 (giugno 2006): 527–28. http://dx.doi.org/10.1134/s106378500606023x.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
34

Jeong, Moon-Young, Yoon-Ha Jeong, Sung-Woo Hwang e Dae M. Kim. "Performance of Single-Electron Transistor Logic Composed of Multi-gate Single-Electron Transistors". Japanese Journal of Applied Physics 36, Part 1, No. 11 (15 novembre 1997): 6706–10. http://dx.doi.org/10.1143/jjap.36.6706.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
35

Chen, Wei. "Fabrication and physics of 2 nm islands for single electron devices". Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 13, n. 6 (novembre 1995): 2883. http://dx.doi.org/10.1116/1.588310.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
36

Jia, Zhaosai, Hailong Wang, Chuanhe Ma, Xin Cao e Qian Gong. "Electron–electron scattering rate in CdTe/CdMnTe single quantum well". International Journal of Modern Physics B 35, n. 21 (31 luglio 2021): 2150221. http://dx.doi.org/10.1142/s0217979221502210.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
CdMnTe is demonstrated to be a good candidate in the X-ray and [Formula: see text]-ray detector application, however, there are few reports on theoretical analysis of electron scattering rate in CdMnTe quantum well. Within the framework of effective mass approximation and envelope function approximation, the influence of the Mn alloy composition ([Formula: see text], the well width ([Formula: see text], the electron temperature ([Formula: see text] and the electron density ([Formula: see text] on the electron–electron scattering rate (1/[Formula: see text] in the CdTe/Cd[Formula: see text]Mn[Formula: see text]Te single quantum well (SQW), are simulated by shooting method and Fermi’s Golden Rule. The results show that 1/[Formula: see text] is significant inverse proportional to [Formula: see text], but positively proportional to [Formula: see text] and [Formula: see text]. Except for a small peak at 20 K, 1/[Formula: see text] is not sensitive to [Formula: see text]. The above differential dependency of 1/[Formula: see text] on [Formula: see text] and [Formula: see text] can be interpreted by sub-band separation ([Formula: see text], which is proportional to [Formula: see text] but inversely proportional to [Formula: see text]. When [Formula: see text] decreases gradually, the electron transition becomes easier, which leads to 1/[Formula: see text] increases. The dependency of 1/[Formula: see text] on [Formula: see text] can be interpreted by kinetic energy of electrons. The larger the electron kinetic energy is, the more difficult the electron transition from first excited state to ground state is, which leads to 1/[Formula: see text] decreasing. The dependency of 1/[Formula: see text] on [Formula: see text] can be interpreted by the Coulomb interaction between electrons, i.e., the increase of electron collision probability caused by the increase of [Formula: see text].
37

Thelander, Claes, Henrik A. Nilsson, Linus E. Jensen e Lars Samuelson. "Nanowire Single-Electron Memory". Nano Letters 5, n. 4 (aprile 2005): 635–38. http://dx.doi.org/10.1021/nl050006s.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
38

Rafiq, M. A., Z. A. K. Durrani, H. Mizuta, A. Colli, P. Servati, A. C. Ferrari, W. I. Milne e S. Oda. "Room temperature single electron charging in single silicon nanochains". Journal of Applied Physics 103, n. 5 (marzo 2008): 053705. http://dx.doi.org/10.1063/1.2887988.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
39

Hasko, D. G., T. Ferrus, Q. R. Morrissey, S. R. Burge, E. J. Freeman, M. J. French, A. Lam et al. "Single shot measurement of a silicon single electron transistor". Applied Physics Letters 93, n. 19 (10 novembre 2008): 192116. http://dx.doi.org/10.1063/1.3028344.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
40

Kubatkin, Sergey, Andrey Danilov, Mattias Hjort, Jérôme Cornil, Jean-Luc Brédas, Nicolai Stuhr-Hansen, Per Hedegård e Thomas Bjørnholm. "Single electron transistor with a single conjugated molecule". Current Applied Physics 4, n. 5 (agosto 2004): 554–58. http://dx.doi.org/10.1016/j.cap.2004.01.018.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
41

Matheoud, Alessandro V., Nergiz Sahin e Giovanni Boero. "A single chip electron spin resonance detector based on a single high electron mobility transistor". Journal of Magnetic Resonance 294 (settembre 2018): 59–70. http://dx.doi.org/10.1016/j.jmr.2018.07.002.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
42

Hwang, Sung Woo, Toshitsugu Sakamoto e Kazuo Nakamura. "Single Electron Digital Phase Modulator". Japanese Journal of Applied Physics 34, Part 1, No. 1 (15 gennaio 1995): 83–84. http://dx.doi.org/10.1143/jjap.34.83.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
43

Akazawa, Masamichi, e Yoshihito Amemiya. "Directional Single-Electron-Tunneling Junction". Japanese Journal of Applied Physics 35, Part 1, No. 6A (15 giugno 1996): 3569–75. http://dx.doi.org/10.1143/jjap.35.3569.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
44

Kirihara, Masaharu, e Kenji Taniguchi. "A Single Electron Neuron Device". Japanese Journal of Applied Physics 36, Part 1, No. 6B (30 giugno 1997): 4172–75. http://dx.doi.org/10.1143/jjap.36.4172.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
45

von Borczyskowski, C., J. Köhler, W. E. Moerner, M. Orrit e J. Wrachtrup. "Single-molecule electron spin resonance". Applied Magnetic Resonance 31, n. 3-4 (settembre 2007): 665–76. http://dx.doi.org/10.1007/bf03166609.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
46

So, Hye-Mi, Jinhee Kim, Wan Soo Yun, Jong Wan Park, Ju-Jin Kim, Do-Jae Won, Yongku Kang e Changjin Lee. "Molecule-based single electron transistor". Physica E: Low-dimensional Systems and Nanostructures 18, n. 1-3 (maggio 2003): 243–44. http://dx.doi.org/10.1016/s1386-9477(02)00996-7.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
47

Abramov, I. I., e E. G. Novik. "Classification of single-electron devices". Semiconductors 33, n. 11 (novembre 1999): 1254–59. http://dx.doi.org/10.1134/1.1187860.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
48

Yu, Yun Seop, Seung Hun Son, Hee Tae Kim, Yong Gyu Kim, Jung Hyun Oh, Hanjung Kim, Sung Woo Hwang, Bum Ho Choi e Doyeol Ahn. "Transmission-Type Radio-Frequency Single-Electron Transistor with In-Plane-Gate Single-Electron Transistor". Japanese Journal of Applied Physics 46, n. 4B (24 aprile 2007): 2592–95. http://dx.doi.org/10.1143/jjap.46.2592.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
49

Fernández-Rossier, J., R. Aguado e L. Brey. "Anisotropic magnetoresistance in single electron transport". physica status solidi (c) 3, n. 12 (dicembre 2006): 4231–34. http://dx.doi.org/10.1002/pssc.200672837.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
50

Speirs, Rory W., Corey T. Putkunz, Andrew J. McCulloch, Keith A. Nugent, Benjamin M. Sparkes e Robert E. Scholten. "Single-shot electron diffraction using a cold atom electron source". Journal of Physics B: Atomic, Molecular and Optical Physics 48, n. 21 (23 settembre 2015): 214002. http://dx.doi.org/10.1088/0953-4075/48/21/214002.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Vai alla bibliografia