Tesi sul tema "Silicon solar cells"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Vedi i top-50 saggi (tesi di laurea o di dottorato) per l'attività di ricerca sul tema "Silicon solar cells".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Vedi le tesi di molte aree scientifiche e compila una bibliografia corretta.
Søiland, Anne Karin. "Silicon for Solar Cells". Doctoral thesis, Norwegian University of Science and Technology, Department of Materials Technology, 2005. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-565.
Testo completoThis thesis work consists of two parts, each with a different motivation. Part II is the main part and was partly conducted in industry, at ScanWafer ASA’s plant no.2 in Glomfjord.
The large growth in the Photo Voltaic industry necessitates a dedicated feedstock for this industry, a socalled Solar Grade (SoG) feedstock, since the currently used feedstock rejects from the electronic industry can not cover the demand. Part I of this work was motivated by this urge for a SoG- feedstock. It was a cooperation with the Sintef Materials and Chemistry group, where the aim was to study the kinetics of the removal reactions for dissolved carbon and boron in a silicon melt by oxidative gas treatment. The main focus was on carbon, since boron may be removed by other means. A plasma arc was employed in combination with inductive heating. The project was, however, closed after only two experiments. The main observations from these two experiments were a significant boron removal, and the formation of a silica layer on the melt surface when the oxygen content in the gas was increased from 2 to 4 vol%. This silica layer inhibited further reactions.
Multi-crystalline (mc) silicon produced by directional solidification constitutes a large part of the solar cell market today. Other techniques are emerging/developing and to keep its position in the market it is important to stay competitive. Therefore increasing the knowledge on the material produced is necessary. Gaining knowledge also on phenomenas occurring during the crystallisation process can give a better process control.
Part II of this work was motivated by the industry reporting high inclusion contents in certain areas of the material. The aim of the work was to increase the knowledge of inclusion formation in this system. The experimental work was divided into three different parts;
1) Inclusion study
2) Extraction of melt samples during crystallisation, these were to be analysed for carbon- and nitrogen. Giving thus information of the contents in the liquid phase during soldification.
3) Fourier Transform Infrared Spectroscopy (FTIR)-measurements of the substitutional carbon contents in wafers taken from similar height positions as the melt samples. Giving thus information of the dissolved carbon content in the solid phase.
The inclusion study showed that the large inclusions found in this material are β-SiC and β-Si3N4. They appear in particularly high quantities in the top-cuts. The nitrides grow into larger networks, while the carbide particles tend to grow on the nitrides. The latter seem to act as nucleating centers for carbide precipitation. The main part of inclusions in the topcuts lie in the size range from 100- 1000 µm in diameter when measured by the Coulter laser diffraction method.
A method for sampling of the melt during crystallisation under reduced pressure was developed, giving thus the possibility of indicating the bulk concentration in the melt of carbon and nitrogen. The initial carbon concentration was measured to ~30 and 40 ppm mass when recycled material was employed in the charge and ~ 20 ppm mass when no recycled material was added. Since the melt temperature at this initial stage is ~1500 °C these carbon levels are below the solubility limit. The carbon profiles increase with increasing fraction solidified. For two profiles there is a tendency of decreasing contents at high fraction solidified.
For nitrogen the initial contents were 10, 12 and 44 ppm mass. The nitrogen contents tend to decrease with increasing fraction solidified. The surface temperature also decreases with increasing fraction solidified. Indicating that the melt is saturated with nitrogen already at the initial stage. The proposed mechanism of formation is by dissolution of coating particles, giving a saturated melt, where β-Si3N4 precipitates when cooling. Supporting this mechanism are the findings of smaller nitride particles at low fraction solidified, that the precipitated phase are β-particles, and the decreasing nitrogen contents with increasing fraction solidified.
The carbon profile for the solid phase goes through a maximum value appearing at a fraction solidified from 0.4 to 0.7. The profiles flatten out after the peak and attains a value of ~ 8 ppma. This drop in carbon content is associated with a precipitation of silicon carbide. It is suggested that the precipitation of silicon carbide occurs after a build-up of carbon in the solute boundary layer.
FTIR-measurements for substitutional carbon and interstitial oxygen were initiated at the institute as a part of the work. A round robin test was conducted, with the Energy Research Centre of the Netherlands (ECN) and the University of Milano-Bicocci (UniMiB) as the participants. The measurements were controlled against Secondary Ion Mass Spectrometer analyses. For oxygen the results showed a good correspondence between the FTIR-measurements and the SIMS. For carbon the SIMS-measurements were significantly lower than the FTIR-measurements. This is probably due to the low resistivity of the samples (~1 Ω cm), giving free carrier absorption and an overestimation of the carbon content.
Tarabsheh, Anas al. "Amorphous silicon based solar cells". kostenfrei, 2007. http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-29491.
Testo completoAl, Tarabsheh Anas. "Amorphous silicon based solar cells". [S.l. : s.n.], 2007. http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-29491.
Testo completoBett, Alexander Jürgen [Verfasser], e Stefan [Akademischer Betreuer] Glunz. "Perovskite silicon tandem solar cells : : two-terminal perovskite silicon tandem solar cells using optimized n-i-p perovskite solar cells". Freiburg : Universität, 2020. http://d-nb.info/1214179703/34.
Testo completoSchultz, Oliver. "High-efficiency multicrystalline silicon solar cells". München Verl. Dr. Hut, 2005. http://deposit.d-nb.de/cgi-bin/dokserv?idn=977880567.
Testo completoEcheverria, Molina Maria Ines. "Crack Analysis in Silicon Solar Cells". Scholar Commons, 2012. http://scholarcommons.usf.edu/etd/4311.
Testo completoLi, Dai-Yin. "Texturization of multicrystalline silicon solar cells". Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/64615.
Testo completoCataloged from PDF version of thesis.
Includes bibliographical references (p. 103-111).
A significant efficiency gain for crystalline silicon solar cells can be achieved by surface texturization. This research was directed at developing a low-cost, high-throughput and reliable texturing method that can create a honeycomb texture. Two distinct approaches for surface texturization were studied. The first approach was photo-defined etching. For this approach, the research focus was to take advantage of Vall6ra's technique published in 1999, which demonstrated a high-contrast surface texture on p-type silicon created by photo-suppressed etching. Further theoretical consideration, however, led to a conclusion that diffusion of bromine in the electrolyte impacts the resolution achievable with Vallera's technique. Also, diffusion of photocarriers may impose an additional limitation on the resolution. The second approach studied was based on soft lithography. For this approach, a texturization process sequence that created a honeycomb texture with 20 ptm spacing on polished wafers at low cost and high throughput was developed. Novel techniques were incorporated in the process sequence, including surface wettability patterning by microfluidic lithography and selective condensation based on Raoult's law. Microfluidic lithography was used to create a wettability pattern from a 100A oxide layer, and selective condensation based on Raoult's law was used to reliably increase the thickness of the glycerol/water liquid film entrained on hydrophilic oxide islands approximately from 0.2 pm to 2.5 pm . However, there remain several areas that require further development to make the process sequence truly successful, especially when applied to multicrystalline wafers.
by Dai-Yin Li.
Ph.D.
Osorio, Ruy Sebastian Bonilla. "Surface passivation for silicon solar cells". Thesis, University of Oxford, 2015. https://ora.ox.ac.uk/objects/uuid:46ebd390-8c47-4e4b-8c26-e843e8c12cc4.
Testo completoZhu, Mingxuan. "Silicon nanowires for hybrid solar cells". Ecole centrale de Marseille, 2013. http://tel.archives-ouvertes.fr/docs/00/94/57/87/PDF/The_manuscript-4.pdf.
Testo completoForster, Maxime. "Compensation engineering for silicon solar cells". Phd thesis, INSA de Lyon, 2012. http://hdl.handle.net/1885/156020.
Testo completoForster, Maxime. "Compensation engineering for silicon solar cells". Phd thesis, INSA de Lyon, 2012. http://tel.archives-ouvertes.fr/tel-00876318.
Testo completoMcCann, Michelle Jane, e michelle mccann@uni-konstanz de. "Aspects of Silicon Solar Cells: Thin-Film Cells and LPCVD Silicon Nitride". The Australian National University. Faculty of Engineering and Information Technology, 2002. http://thesis.anu.edu.au./public/adt-ANU20040903.100315.
Testo completoChen, Wan Lam Florence Photovoltaics & Renewable Energy Engineering Faculty of Engineering UNSW. "PECVD silicon nitride for n-type silicon solar cells". Publisher:University of New South Wales. Photovoltaics & Renewable Energy Engineering, 2008. http://handle.unsw.edu.au/1959.4/41277.
Testo completoSlade, Alexander Mason Electrical Engineering UNSW. "Boron tribromide sourced boron diffusions for silicon solar cells". Awarded by:University of New South Wales. Electrical Engineering, 2005. http://handle.unsw.edu.au/1959.4/21850.
Testo completoKaminski, Piotr M. "Remote plasma sputtering for silicon solar cells". Thesis, Loughborough University, 2013. https://dspace.lboro.ac.uk/2134/13058.
Testo completoMadhavan, Atul. "Alternative designs for nanocrystalline silicon solar cells". [Ames, Iowa : Iowa State University], 2009. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3403005.
Testo completoNordmark, Heidi. "Microstructure studies of silicon for solar cells". Doctoral thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for fysikk, 2009. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-5384.
Testo completoReuter, Michael [Verfasser]. "Thin Crystalline Silicon Solar Cells / Michael Reuter". München : Verlag Dr. Hut, 2011. http://d-nb.info/1012432041/34.
Testo completoInns, Daniel Photovoltaics & Renewable Energy Engineering Faculty of Engineering UNSW. "ALICIA polycrystalline silicon thin-film solar cells". Publisher:University of New South Wales. Photovoltaics & Renewable Energy Engineering, 2007. http://handle.unsw.edu.au/1959.4/43600.
Testo completoStüwe, David [Verfasser], e Jan G. [Akademischer Betreuer] Korvink. "Inkjet processes for crystalline silicon solar cells". Freiburg : Universität, 2015. http://d-nb.info/1122646984/34.
Testo completoShariff, A. "Computer simulation of amorphous silicon solar cells". Thesis, Swansea University, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.638814.
Testo completoTsuda, Shinya. "TOWARDS HIGH EFFICIENCY AMORPHOUS SILICON SOLAR CELLS". Kyoto University, 1988. http://hdl.handle.net/2433/162221.
Testo completoDavidson, Lauren Michel. "Strategies for high efficiency silicon solar cells". Thesis, University of Iowa, 2017. https://ir.uiowa.edu/etd/5452.
Testo completoCai, Li. "Improved understanding and control of the properties of PECVD silicon nitride and its applications in multicrystalline silicon solar cells". Diss., Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/15468.
Testo completoSchumacher, Jürgen Otto. "Numerical simulation of silicon solar cells with novel cell structures". [S.l. : s.n.], 2000. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB9170598.
Testo completoLu, Meijun. "Silicon heterojunction solar cell and crystallization of amorphous silicon". Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 295 p, 2009. http://proquest.umi.com/pqdweb?did=1654494651&sid=3&Fmt=2&clientId=8331&RQT=309&VName=PQD.
Testo completoBrody, Jed. "Doping dependence of surface and bulk passivation of multicrystalline silicon solar cells". Diss., Available online, Georgia Institute of Technology, 2004:, 2003. http://etd.gatech.edu/theses/available/etd-04082004-180041/unrestricted/brody%5Fjed%5F200312%5Fphd.pdf.
Testo completoJain, Nikhil. "Design of III-V Multijunction Solar Cells on Silicon Substrate". Thesis, Virginia Tech, 2011. http://hdl.handle.net/10919/33048.
Testo completoMaster of Science
Yao, Guoxiao Centre for Photovoltaic Engineering UNSW. "High efficiency metal stencil printed silicon solar cells". Awarded by:University of New South Wales. Centre for Photovoltaic Engineering, 2005. http://handle.unsw.edu.au/1959.4/23062.
Testo completoGhosh, Kunal. "Modeling of amorphous silicon/crystalline silicon heterojunction by commercial simulator". Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 48 p, 2009. http://proquest.umi.com/pqdweb?did=1654493871&sid=6&Fmt=2&clientId=8331&RQT=309&VName=PQD.
Testo completoKang, Moon Hee. "Development of high-efficiency silicon solar cells and modeling the impact of system parameters on levelized cost of electricity". Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/47647.
Testo completoDemircioglu, Olgu. "Optimization Of Metalization In Crystalline Silicon Solar Cells". Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614584/index.pdf.
Testo completonalan August 2012, 103 pages Production steps of crystalline silicon solar cells include several physical and chemical processes like etching, doping, annealing, nitride coating, metallization and firing of the metal contacts. Among these processes, the metallization plays a crucial role in the energy conversion performance of the cell. The quality of the metal layers used on the back and the front surface of the cell and the quality of the electrical contact they form with the underlying substrate have a detrimental effect on the amount of the power generated by the cell. All aspects of the metal layer, such as electrical resistivity, contact resistance, thickness, height and width of the finger layers need to be optimized very carefully for a successful solar cell operation. In this thesis, metallization steps within the crystalline silicon solar cell production were studied in the laboratories of Center for Solar Energy Research and Application (GÜ
NAM). Screen Printing method, which is the most common metallization technique in the industry, was used for the metal layer formation. With the exception of the initial experiments, 6
Macdonald, Daniel Harold, e daniel@faceng anu edu au. "Recombination and Trapping in Multicrystalline Silicon Solar Cells". The Australian National University. Faculty of Engineering and Information Technology, 2001. http://thesis.anu.edu.au./public/adt-ANU20011218.134830.
Testo completoSong, Yang Photovoltaics & Renewable Energy Engineering Faculty of Engineering UNSW. "Dielectric thin film applications for silicon solar cells". Publisher:University of New South Wales. Photovoltaics & Renewable Energy Engineering, 2009. http://handle.unsw.edu.au/1959.4/44486.
Testo completoLiang, Jianjun. "Device physics of hydrogenated amorphous silicon solar cells". Related electronic resource: Current Research at SU : database of SU dissertations, recent titles available full text, 2006. http://proquest.umi.com/login?COPT=REJTPTU0NWQmSU5UPTAmVkVSPTI=&clientId=3739.
Testo completoJamshidi, Gohari Ebrahim. "Buried screen-printed contacts for silicon solar cells". Thesis, Högskolan Dalarna, Energi och miljöteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:du-13593.
Testo completoIn collaboration with Institute for Photovoltaics IPV, University of Stuttgart.
Heß, Uwe [Verfasser]. "Investigations of RGS Silicon Solar Cells / Uwe Heß". München : Verlag Dr. Hut, 2013. http://d-nb.info/1037286839/34.
Testo completoShih, Jeanne-Louise. "Zinc oxide-silicon heterojunction solar cells by sputtering". Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=112583.
Testo completoTucher, Nico [Verfasser], Claas [Verfasser] Müller e Stefan [Verfasser] Glunz. "Analysis of photonic structures for silicon solar cells". Freiburg : Universität, 2016. http://d-nb.info/1136567186/34.
Testo completoThomas, Trevor. "The computer modelling of amorphous silicon solar cells". Thesis, Cardiff University, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.361326.
Testo completoThompson, Robin Forster. "Doping effects in hydrogenated amorphous silicon solar cells". Thesis, Heriot-Watt University, 1985. http://hdl.handle.net/10399/1624.
Testo completoMahanama, G. D. K. "Low temperature processing of crystalline silicon solar cells". Thesis, London South Bank University, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.435235.
Testo completoTahhan, Abdulla. "Energy performance enhancement of crystalline silicon solar cells". Thesis, Brunel University, 2016. http://bura.brunel.ac.uk/handle/2438/14503.
Testo completoBall, Jeremy. "The growth of silicon nanowires for solar cells". Thesis, London South Bank University, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.587543.
Testo completoQuinn, Thomas Edward. "Growth and crystallisation of silicon for solar cells". Thesis, London South Bank University, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.570870.
Testo completoSchuster, Christian. "Diffractive optics for thin-film silicon solar cells". Thesis, University of York, 2015. http://etheses.whiterose.ac.uk/9083/.
Testo completoSchube, Jörg [Verfasser], e Stefan [Akademischer Betreuer] Glunz. "Metallization of silicon solar cells with passivating contacts". Freiburg : Universität, 2020. http://d-nb.info/1225294142/34.
Testo completoZanuccoli, Mauro <1974>. "Advanced Numerical Simulation of Silicon-Based Solar Cells". Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2012. http://amsdottorato.unibo.it/4566/1/Zanuccoli_Mauro_tesi.pdf.
Testo completoLa conversione fotovoltaica è la produzione diretta di energia elettrica dal sole che non comporta l'emissione di sostanze inquinanti. Al fine di competere con altre fonti di energia, la tecnologia fotovoltaica deve subire una riduzione del costo garantendo contemporaneamente adeguate efficienze di conversione. Questi obiettivi hanno motivato l'interesse dei ricercatori al progetto ed all'analisi di celle solari avanzate in silicio cristallino. Poiché la riduzione del costo dei dispositivi fotovoltaici comporta tipicamente la riduzione del volume di semiconduttore, è necessaria una strategia efficace di intrappolamento della luce per aumentare l'assorbimento dei fotoni. Gli approcci orientati alla simulazione ottica comunemente adottati per la celle solari in silicio cristallino possono condurre a risultati non accurati in caso di celle a film sottile e nanostrutturate. D'altra parte, i risolutori rigorosi delle equazioni di Maxwell sono altamente onerosi in termini computazionali. Recentemente, nella simulazione ottica di celle solari, il metodo RCWA ha acquisito una forte popolarità, fornendo un buon compromesso tra accuratezza e fabbisogno di risorse computazionali. Questa tesi rappresenta un contributo alla simulazione numerica -sia ottica che elettrica- di celle solari avanzate al silicio. Un simulatore numerico di dispositivi a semiconduttore 2-D/3-D allo stato dell'arte è stato applicato con successo alla simulazione di celle a doppia diffusione di emettitore a di celle con superficie posteriore passivata e contatto locale, per le quali è richiesta la multi-dimensionalità del modello di trasporto al fine di descrivere correttamente tutti i meccanismi fisici. Nella seconda parte della tesi, vengono discussi gli aspetti relativi alla simulazione ottica. Due innovative e computazionalmente efficienti implementazioni del metodo RCWA per domini di simulazione 2-D nonché un terzo simulatore RCWA per strutture 3-D basato sul calcolo di autovalori sono stati presentati in questa tesi. I simulatori proposti sono stati validati in termini di accuratezza, convergenza numerica, tempo di calcolo e correttezza dei risultati.
Zanuccoli, Mauro <1974>. "Advanced Numerical Simulation of Silicon-Based Solar Cells". Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2012. http://amsdottorato.unibo.it/4566/.
Testo completoLa conversione fotovoltaica è la produzione diretta di energia elettrica dal sole che non comporta l'emissione di sostanze inquinanti. Al fine di competere con altre fonti di energia, la tecnologia fotovoltaica deve subire una riduzione del costo garantendo contemporaneamente adeguate efficienze di conversione. Questi obiettivi hanno motivato l'interesse dei ricercatori al progetto ed all'analisi di celle solari avanzate in silicio cristallino. Poiché la riduzione del costo dei dispositivi fotovoltaici comporta tipicamente la riduzione del volume di semiconduttore, è necessaria una strategia efficace di intrappolamento della luce per aumentare l'assorbimento dei fotoni. Gli approcci orientati alla simulazione ottica comunemente adottati per la celle solari in silicio cristallino possono condurre a risultati non accurati in caso di celle a film sottile e nanostrutturate. D'altra parte, i risolutori rigorosi delle equazioni di Maxwell sono altamente onerosi in termini computazionali. Recentemente, nella simulazione ottica di celle solari, il metodo RCWA ha acquisito una forte popolarità, fornendo un buon compromesso tra accuratezza e fabbisogno di risorse computazionali. Questa tesi rappresenta un contributo alla simulazione numerica -sia ottica che elettrica- di celle solari avanzate al silicio. Un simulatore numerico di dispositivi a semiconduttore 2-D/3-D allo stato dell'arte è stato applicato con successo alla simulazione di celle a doppia diffusione di emettitore a di celle con superficie posteriore passivata e contatto locale, per le quali è richiesta la multi-dimensionalità del modello di trasporto al fine di descrivere correttamente tutti i meccanismi fisici. Nella seconda parte della tesi, vengono discussi gli aspetti relativi alla simulazione ottica. Due innovative e computazionalmente efficienti implementazioni del metodo RCWA per domini di simulazione 2-D nonché un terzo simulatore RCWA per strutture 3-D basato sul calcolo di autovalori sono stati presentati in questa tesi. I simulatori proposti sono stati validati in termini di accuratezza, convergenza numerica, tempo di calcolo e correttezza dei risultati.
Levitsky, I. A. "Carbon Nanotubes - Si Hybrid Solar Cells". Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35493.
Testo completo