Letteratura scientifica selezionata sul tema "Signature inversion"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Signature inversion".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Signature inversion"
Van Den Broeke, Matthew S. "Bioscatter Characteristics Related to Inversion Variability in Atlantic Basin Tropical Cyclones". Earth Interactions 26, n. 1 (gennaio 2022): 28–38. http://dx.doi.org/10.1175/ei-d-21-0010.1.
Testo completoZhang, Jian Hong, Hua Chen e Yi Xian Yang. "Efficient Blind Signature Scheme Based on Modified Generalized Bilinear Inversion". Key Engineering Materials 439-440 (giugno 2010): 1265–70. http://dx.doi.org/10.4028/www.scientific.net/kem.439-440.1265.
Testo completoVallée, Marc A., William A. Morris, Stéphane Perrouty, Robert G. Lee, Ken Wasyliuk, Julia J. King, Kevin Ansdell et al. "Geophysical inversion contributions to mineral exploration: lessons from the Footprints project". Canadian Journal of Earth Sciences 56, n. 5 (maggio 2019): 525–43. http://dx.doi.org/10.1139/cjes-2019-0009.
Testo completoZhang, Jian Hong, Min Xu e Xiu Na Su. "An Efficient and Provably Secure Proxy Signature Scheme". Advanced Materials Research 211-212 (febbraio 2011): 876–80. http://dx.doi.org/10.4028/www.scientific.net/amr.211-212.876.
Testo completoLandrø, M., e R. Sollie. "Source signature determination by inversion". GEOPHYSICS 57, n. 12 (dicembre 1992): 1633–40. http://dx.doi.org/10.1190/1.1443230.
Testo completoOnishi, N., e N. Tajima. "An Interpretation of Signature Inversion". Progress of Theoretical Physics 80, n. 1 (1 luglio 1988): 130–37. http://dx.doi.org/10.1143/ptp.80.130.
Testo completoZhou, S.-G., Y.-Z. Liu, Y.-J. Ma e C.-X. Yang. "Low-spin signature inversion in". Journal of Physics G: Nuclear and Particle Physics 22, n. 3 (1 marzo 1996): 415–20. http://dx.doi.org/10.1088/0954-3899/22/3/014.
Testo completoXu, F. R., W. Satuła e R. Wyss. "Quadrupole pairing interaction and signature inversion". Nuclear Physics A 669, n. 1-2 (aprile 2000): 119–34. http://dx.doi.org/10.1016/s0375-9474(99)00817-9.
Testo completoLyons, Terry J., e Weijun Xu. "Hyperbolic development and inversion of signature". Journal of Functional Analysis 272, n. 7 (aprile 2017): 2933–55. http://dx.doi.org/10.1016/j.jfa.2016.12.024.
Testo completoAghamiry, H. S., F. W. Mamfoumbi-Ozoumet, A. Gholami e S. Operto. "Efficient extended-search space full-waveform inversion with unknown source signatures". Geophysical Journal International 227, n. 1 (22 maggio 2021): 257–74. http://dx.doi.org/10.1093/gji/ggab202.
Testo completoTesi sul tema "Signature inversion"
Xu, Weijun. "Inverting the signature of a path". Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:954ff1e3-9162-456a-91a3-39734854cde2.
Testo completoJodidar, Praveen Muralidhar. "Study of collectivity in neutron-deficient A≈120 nuclei close to the proton drip line". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP124.
Testo completoThis thesis reports on spectroscopic studies of very neutron-deficient nuclei in the mass region A ≈ 120. We performed the fusion evaporation reaction ⁶⁴Zn + ⁵⁸Ni and used the Jurogam 3 + MARA setup located at JYFL, Finland. More than 15 nuclei were produced in this reaction. Our study was mainly focused on three isotopes: ¹²⁰La, ¹¹⁷Cs, and ¹¹⁴I. We identified excited states in ¹²⁰La for the first time which makes ¹²⁰La the lightest isotope of lanthanum known spectroscopically. The observed states are organized in a cascade built on the ground state and a rotational band built on the πh_11/2 ⊗ νh_11/2 configuration. Cranked Nilsson Strutinsky calculations were performed to estimate the deformation parameters, and a two-quasiparticle plus triaxial rotor model was employed to describe the signature inversion and B(M1)/B(E2) transition probabilities. In the case of ¹¹⁷Cs, we found three new bands, established the ground state, and the excitation energies of bands 1 and 2. With the help of the mass spectra obtained at the focal plane of the MARA separator and the X-rays observed in the Jurogam 3 detector, we firmly assigned all the observed bands to ¹¹⁷Cs. Particle number conserving cranked shell model calculations were performed to check the assigned configurations to all bands. The calculations suggest that ¹¹⁷Cs is a deformed nucleus with ε₂ ≈ 0.32. We also studied the level structure of ¹¹⁴I, in which we found several low-lying states characterized by a small deformation, and three rotational bands at higher excitation energy based on larger deformation. We established the bandhead energy of all bands and thereby identified the ground state. Three new isomers were identified based on the imbalance in the intensities. The shell-model calculations suggest a prolate-oblate shape coexistence in ¹¹⁴I. In all this work, spins and parities were assigned based on angular correlation and polarisation measurements. We also performed a detailed analysis of the rotational properties of all identified bands, which helped us to understand the physics behind the level structure
Chantler, Hannah Jane. "High-spin gamma-ray spectroscopy of doubly odd 124La; signature inversion in πh11/2 x vh11/2 bands". Thesis, University of Liverpool, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.396474.
Testo completoShirinda, Obed. "Signature splitting and inversion in the 186-194 Au Nuclei predicted by the total routhian surface (TRS) and cranked shell model (CSM) calculations". Thesis, University of the Western Cape, 2007. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_6814_1255091175.
Testo completoThe nearly oblate deformed Au nuclei show rotational bands built on multi quasiparticle excitations [Bou89, Bou92, Gue03, Gue01, Ven92]. Several of these bands are built on rotationally aligned high-j proton and neutron excitations. In many cases bands consisting of two or three signature partner E2 sequences are observed. For some fo these bands signature inversion is found and this feature gives a great challenge to the theoretical models. In this study the researcher performed TRS and CSM calculations for all high-j rotational bands in the p186-194s Au nuclei aiming to predict the signature splitting and inversion phemomena, alignments, gains in alignments, gains in alignment and band crossing frequencies observed.
Vandevoorde, Loïc. "Contribution à la caractérisation des revêtements par inversion des courbes V (z)". Valenciennes, 2006. http://ged.univ-valenciennes.fr/nuxeo/site/esupversions/5ee970e0-5094-4d66-96f7-0a013a8e5e24.
Testo completoThe study aims at characterizing the adhesion of plasma coatings using acoustic microscopy. The samples are Cu9. 5Al1Fe aluminium bronze air plasma spray coated low carbon steel plates. The experimental V(z) signal corresponds to the output voltage of the focalised transucer as a function of the distance between the surface of the sample and the focus. The inversion process operated on the V(z) signal gives the reflectance coefficient R(Ө,f) of the studied sample. The location of the R(Ө,f) minima is dependant on the elastic constants Cij and on the quality of the adhesion. For coated specimen, R can be evaluated by numerical computation, using the recursive method of Thomson Haskell which considers the continuity of both strains ans stresses. In the model developed by Achenbach it is considered that the lack of interfacial adhesion introduces a displacement gap at the interface tha can be related to the stress fiels correponding to the propagating waves thanks to the stiffness coefficients KL and KT. This leads to defining a deviation function which is a sum of quadratic terms corresponding to the difference between the measured R-coefficient and the simulated one versus the elastic constants or KL and KT. The optimization is performed using the simplex method. The results show that the V(z) metho enables to determine the elastic coefficients of the coating. In the case of samples with different adhesin levels, the values of stiffness constants are between 1013 and 1014 Pa. M-1. In the case of good adhesion levels, the values of stiffness constants are higher than 1015 Pa. M-1. The results obtained by acoustic microscopy are consistent with results obtained by destructive methods such as interfacial indentation and with substrate roughness measurements performed before coating
Calou, Paul. "Mesure et compensation de bâtiments navals à l’aide de capteurs magnétiques trois composantes". Thesis, Strasbourg, 2019. http://www.theses.fr/2019STRAH018.
Testo completoThis PhD thesis aims to apply geophysical practices to another magnetic branch which deals with ship’s signature and magnetization with different methods and habits. Firstly, we present the specificity and practices of each domain, introducing the key notions as well as the differences between each kind of measurement. We check the validity of the approximation corresponding to total-field magnetic anomalies in the particular case of our measurements. In a second time, chapter 2 and 3, a mathematical relation is demonstrated between the scalar anomaly and the three components of the anomaly field based on the equivalent layer method. Chapter 4 summarize the experimental work, focusing on the determination of the best electrical current to compensate the ship’s magnetic signature. The experimental system is presented as well as the main results obtained. In chapter 5, a new approach for closed loop degaussing system is presented, based on a compensation algorithm. We also show some results obtained thanks to the compensation with three-component magnetometers onboard a real ship. Chapter 6 corresponds to an article submitted to a scientific journal (IEEE) that summarize most of the problematics of the thesis
Capitoli di libri sul tema "Signature inversion"
Bellare, Mihir, Chanathip Namprempre, David Pointcheval e Michael Semanko. "The Power of RSA Inversion Oracles and the Security of Chaum’s RSA-Based Blind Signature Scheme". In Financial Cryptography, 319–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-46088-8_25.
Testo completoLenstra, Arjen K. "Generating standard DSA signatures without long inversion". In Lecture Notes in Computer Science, 57–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/bfb0034835.
Testo completoChen, Yangjun, e Yong Shi. "Signature Files and Signature File Construction". In Encyclopedia of Database Technologies and Applications, 638–45. IGI Global, 2005. http://dx.doi.org/10.4018/978-1-59140-560-3.ch105.
Testo completoChen, Yangjun. "An Overview on Signature File Techniques". In Handbook of Research on Innovations in Database Technologies and Applications, 644–54. IGI Global, 2009. http://dx.doi.org/10.4018/978-1-60566-242-8.ch069.
Testo completoPratt, George. "Second Level Dominants". In The Dynamics of Harmony Principles & Practice, 30–36. Oxford University PressOxford, 1996. http://dx.doi.org/10.1093/oso/9780198790204.003.0004.
Testo completoAtti di convegni sul tema "Signature inversion"
Calef, Brandoch, John Africano, Brian Birge, Doyle Hall e Paul Kervin. "Photometric signature inversion". In SPIE Optics + Photonics, a cura di Victor L. Gamiz, Paul S. Idell e Marija S. Strojnik. SPIE, 2006. http://dx.doi.org/10.1117/12.683015.
Testo completoLandrø, M., e R. Sollie. "Source signature determination by inversion". In SEG Technical Program Expanded Abstracts 1992. Society of Exploration Geophysicists, 1992. http://dx.doi.org/10.1190/1.1822199.
Testo completoCunha Filho, C. A. "A Pragmatic Approach to Seismic Signature Inversion". In Second EAGE/SBGf Workshop 2014. Netherlands: EAGE Publications BV, 2014. http://dx.doi.org/10.3997/2214-4609.20147400.
Testo completoRyzhikov, Gennady A., e Marina S. Biryulina. "Removal of intrabed multiples via source‐signature invariant inversion". In SEG Technical Program Expanded Abstracts 1999. Society of Exploration Geophysicists, 1999. http://dx.doi.org/10.1190/1.1820685.
Testo completoAaker, Ole Edvard, Espen Birger Raknes e Ørjan Pedersen. "Newton-type inversion for source signature and medium parameters". In First International Meeting for Applied Geoscience & Energy. Society of Exploration Geophysicists, 2021. http://dx.doi.org/10.1190/segam2021-3581908.1.
Testo completoAkçelik, Volkan, Huseyin Denli, Alex Kanevsky, Kinesh K. Patel, Laurent White e Martin‐Daniel Lacasse. "Multiparameter material model and source signature full waveform inversion". In SEG Technical Program Expanded Abstracts 2011. Society of Exploration Geophysicists, 2011. http://dx.doi.org/10.1190/1.3627692.
Testo completoAlexa, P. "The microscopic analysis of signature inversion in odd-odd nuclei". In The tenth international symposium on capture gamma-ray spectroscopyand related topics. AIP, 2000. http://dx.doi.org/10.1063/1.1361432.
Testo completoLi, Guofa, Xiaolong Yin*, Zi Liu e Mingqiang Cao. "Directional deconvolution of air gun array signature via nonstationary inversion scheme". In SEG Technical Program Expanded Abstracts 2015. Society of Exploration Geophysicists, 2015. http://dx.doi.org/10.1190/segam2015-5836115.1.
Testo completoZiolkowski, A. "Robust Inversion of Land Seismic Dynamite Data for Source Signature Determination". In 82nd EAGE Annual Conference & Exhibition. European Association of Geoscientists & Engineers, 2021. http://dx.doi.org/10.3997/2214-4609.202012218.
Testo completoYuhu, Zhang, Zhou Xiaohong, Zhao Qingzhong, Sun Xiangfu, Lei Xiangguo, Guo Yingxiang, Liu Zhong et al. "Search for Signature Inversion of Yrast Band in Odd-Odd 162Lu Nucleus". In Proceedings of the Second International Symposium. WORLD SCIENTIFIC, 1996. http://dx.doi.org/10.1142/9789814447195_0036.
Testo completo