Letteratura scientifica selezionata sul tema "Shenyang bo li chang"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Shenyang bo li chang".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Articoli di riviste sul tema "Shenyang bo li chang"

1

Iqra Arshad, Hifza Iqbal, Syeda Saira Iqbal, Muhammad Afzaal e Yasir Rehman. "A Review on the Synergistic Approaches for Heavy Metals Bioremediation: Harnessing the Power of Plant-Microbe Interactions". Lahore Garrison University Journal of Life Sciences 8, n. 2 (29 giugno 2024): 268–86. http://dx.doi.org/10.54692/lgujls.2024.0802343.

Testo completo
Abstract (sommario):
Heavy metals contamination is a serious threat to all life forms. Long term exposure of heavy metals can lead to different life-threatening medical conditions including cancers of different body parts. Phytoremediation and bioremediation offer a potential eco-friendly solution to such problems. Different microbes can interact with heavy metals in a variety of ways such as biotransformation, oxidation/reduction, and biosorption. Phytoremediation of the heavy metals using plants mostly involves rhizofilteration, phytoextraction, phytovolatization, and Phyto stabilization. A synergistic approach using both plants and microbes has proven much more efficient as compared to the individual applications of microbes or plants. This article aims to highlight the synergistic methods used in bioremediation, emphasizing the potent collaboration between bacteria and plants for environmental cleaning, along with the discussion of the importance of site-specific variables and potential constraints. While identifying the necessity for all-encompassing solutions, this review places emphasis on the combination of methodologies as a multifarious rehabilitation approach. This discussion offers insightful suggestions for scholars, scientists and decision-makers about the sustainable recovery of heavy metal-contaminated environments using a comprehensive strategy. REFERENCES Ankit, Bauddh K, Korstad J (2022). Phycoremediation: Use of algae to sequester heavy metals. Hydrobiol. 1(3): 288-303. Arantza SJ, Hiram MR, Erika K, Chávez-Avilés MN, Valiente-Banuet JI, Fierros-Romero G (2022). Bio-and phytoremediation: Plants and microbes to the rescue of heavy metal polluted soils. SN Appl. Sci. 4(2): 59. Azubuike CC, Chikere CB, Okpokwasili GC (2016). Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. World J. Microbiol. Biotechnol. 32: 1-18. Berti WR, Cunningham SD (2000). Phytostabilization of metals. Phytoremediation of toxic metals: Using plants to clean up the environment. Wiley, New York. 71-88. Bingöl NA, Özmal F, Akın B (2017). Phytoremediation and biosorption potential of Lythrum salicaria for nickel removal from aqueous solutions. Pol. J. Environ. Stud. 26(6): 2479-2485. Chandra R, Saxena G, Kumar V (2015). Phytoremediation of environmental pollutants: an eco-sustainable green technology to environmental management, In Advances in biodegradation and bioremediation of industrial waste. 1-29. Chaudhary K, Agarwal S, Khan S (2018). Role of phytochelatins (PCs), metallothioneins (MTs), and heavy metal ATPase (HMA) genes in heavy metal tolerance, In Mycoremediation and Environmental Sustainability. Volume 2: 39-60. Choudhary M, Kumar R, Datta A, Nehra V, Garg N (2017). Bioremediation of heavy metals by microbes, In Bioremediation of salt affected soils: an Indian perspective. 233-255. Chugh M, Kumar L, Shah MP, Bharadvaja N (2022). Algal bioremediation of heavy metals: An insight into removal mechanisms, recovery of by-products, challenges, and future opportunities. Energy Nexus. 7:100129. Congeevaram S, Dhanarani S, Park J, Dexilin M, Thamaraiselvi K (2007). Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates. J. Hazard. Mat. 146(1-2): 270-277. Cristaldi A, Conti GO, Jho EH, Zuccarello P, Grasso A, Copat C, Ferrante M (2017). Phytoremediation of contaminated soils by heavy metals and PAHs. A brief review. Environ. Technol. Inno. 8: 309-326. Crusberg T, Mark S. (2000). Heavy metal remediation of wastewaters by microbial biotraps, In Springer. 123-137. Emenike CU, Jayanthi B, Agamuthu P, Fauziah S (2018). Biotransformation and removal of heavy metals: a review of phytoremediation and microbial remediation assessment on contaminated soil. Environ. Rev. 26(2): 156-168. Ghosh M, Singh S (2005). A review on phytoremediation of heavy metals and utilization of it’s by products. Asian J. Energy Environ. 6(4): 18. Guignardi Z, Schiavon M (2017). Biochemistry of plant selenium uptake and metabolism, In Selenium in plants: molecular, physiological, ecological and evolutionary aspects. 21-34. Hong-Bo S, Li-Ye C, Cheng-Jiang R, Hua L, Dong-Gang G, Wei-Xiang L (2010). Understanding molecular mechanisms for improving phytoremediation of heavy metal-contaminated soils. Crit. Rev. Biotechnol. 30(1): 23-30. Igiri BE, Okoduwa SI, Idoko GO, Akabuogu EP, Adeyi AO, Ejiogu IK (2018). Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: a review. J. Toxicol. 2018. Jabeen R, Ahmad A, Iqbal M (2009). Phytoremediation of heavy metals: physiological and molecular mechanisms. Bot. Rev. 75: 339-364. Joshi P, Swarup A, Maheshwari S, Kumar R, Singh N (2011). Bioremediation of heavy metals in liquid media through fungi isolated from contaminated sources. Indian J. Microbiol. 51: 482-487. Junaid M, Hashmi MZ, Tang YM, Malik RN, Pei,DS (2017). Potential health risk of heavy metals in the leather manufacturing industries in Sialkot, Pakistan. Sci. Rep. 7(1): 8848. Kapahi M, Sachdeva S (2019). Bioremediation options for heavy metal pollution. J. Health Pollut. 9(24): 191203. Lebeau T, Jézéquel K, Braud A (2011). Bioaugmentation-assisted phytoextraction applied to metal-contaminated soils: state of the art and future prospects, In Microbes and Microbial Technology: Agricultural and Environmental Applications. 229-266. Leong YK, Chang JS (2020). Bioremediation of heavy metals using microalgae: Recent advances and mechanisms. Bioresour.Technol. 303: 122886. Limmer M, Burken J (2016). Phytovolatilization of organic contaminants. Environ. Sci. Technol. 50(13): 6632-6643. Ma Y, Oliveira RS, Freitas H, Zhang C (2016). Biochemical and molecular mechanisms of plant-microbe-metal interactions: relevance for phytoremediation. Front. Plant Sci. 7: 918. Manzoor M, Gul I, Ahmed I, Zeeshan M, Hashmi I, Amin BAZ, Kallerhoff J, Arshad M (2019). Metal tolerant bacteria enhanced phytoextraction of lead by two accumulator ornamental species. Chemosphere. 227: 561-569. Mueller B, Rock S, Gowswami D, Ensley D (1999). Phytoremediation decision tree. Prepared by-Interstate Technology and Regulatory Cooperation Work Group. 1-36. Nies DH (1999). Microbial heavy-metal resistance. Appl. Microbiol. Biotechnol. 51: 730-750. Nies DH, Silver S (1995). Ion efflux systems involved in bacterial metal resistances. J. Ind. 14: 186-199. Pande V, Pandey SC, Sati D, Bhatt P, Samant M (2022). Microbial interventions in bioremediation of heavy metal contaminants in agroecosystem. Front. Microbiol. 13: 824084. Pandey VC, Bajpai O (2019). Phytoremediation: from theory toward practice, In Phytomanagement of polluted sites. 1-49. Robinson BH, Leblanc M, Petit D, Brooks RR, Kirkman JH, Gregg PE (1998). The potential of Thlaspi caerulescens for phytoremediation of contaminated soils. Plant Soil. 203: 47-56. Romantschuk M, Lahti-Leikas K, Kontro M, Allen JA, Sinkkonen A (2023). Bioremediation of contaminated soil and groundwater by in situ Front. Microbiol. 14: 1258148. Sabreena, Hassan S, Bhat SA, Kumar V, Ganai BA, Ameen F (2022). Phytoremediation of heavy metals: An indispensable contrivance in green remediation technology. Plants. 11(9): 1255. Saha L, Tiwari J, Bauddh K, Ma Y (2021). Recent developments in microbe–plant-based bioremediation for tackling heavy metal-polluted soils. Front. Microbiol. 12: 731723. Sharma I. (2020). Bioremediation techniques for polluted environment: concept, advantages, limitations, and prospects, In Trace metals in the environment-new approaches and recent advances. IntechOpen. Sharma JK, Kumar N, Singh NP, Santal, AR (2023). Phytoremediation technologies and their mechanism for removal of heavy metal from contaminated soil: An approach for a sustainable environment. Front. Plant Sci. 14: 1076876. Shen X, Dai M, Yang J, Sun L, Tan X, Peng C, Ali I, and Naz I (2022). A critical review on the phytoremediation of heavy metals from environment: Performance and challenges. Chemosphere. 291: 132979. Silver S (2011). BioMetals: a historical and personal perspective. Biometals. 24(3): 379-390. Silver S, Phung LT (2005). A bacterial view of the periodic table: genes and proteins for toxic inorganic ions. J. Ind. Microbiol. Biotechnol. 32: 587-605. Singh N, Santal AR (2015). Phytoremediation of heavy metals: the use of green approaches to clean the environment, In Phytoremediation: Management of Environmental Contaminants. Volume 2: 115-129. Strong PJ, Burgess JE (2008). Treatment methods for wine-related and distillery wastewaters: a review. Bioremediation J. 12(2): 70-87. Syranidou E, Christofilopoulos S, Gkavrou G, Thijs S, Weyens N, Vangronsveld J, Kalogerakis N (2016). Exploitation of endophytic bacteria to enhance the phytoremediation potential of the wetland helophyte Juncus acutus. Front. Microbiol. 7: 1016. Umrania VV (2006). Bioremediation of toxic heavy metals using acidothermophilic autotrophes. Bioresour. Technol. 97(10): 1237-1242. Valls M, De Lorenzo V (2002). Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol. Rev. 26(4): 327-338. Verma P, George K, Singh H, Singh S, Juwarkar A, Singh R (2006). Modeling rhizofiltration: heavy-metal uptake by plant roots. Environ. Model. Assess. 11: 387-394. Wu Y, Li Z, Yang Y, Purchase D, Lu Y, Dai Z (2021). Extracellular polymeric substances facilitate the adsorption and migration of Cu2+ and Cd2+ in saturated porous media. Biomolecules. 11(11): 1715. Wuana RA, Okieimen FE (2011). Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. International Scholarly Research Notices. Yan A, Wang Y, Tan SN, Mohd Yusof ML, Ghosh S, Chen Z (2020). Phytoremediation: a promising approach for revegetation of heavy metal-polluted land. Front. Plant Sci. 11: 359. Zhang Y, Hu J, Bai J, Wang J, Yin R, Wang J, and Lin X (2018). Arbuscular mycorrhizal fungi alleviate the heavy metal toxicity on sunflower (Helianthus annuus) plants cultivated on a heavily contaminated field soil at a WEEE-recycling site. Sci. Total Environ. 628: 282-290.
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Thi, Tran Thi Mai, Phan Tan Dat, Vo Cao Minh, Nguyen Huu Tho e Nguyen Xuan Sang. "Physical Adsorption and Photocatalytic Activity of Titanium Dioxide Nanotube and Graphene Oxide Composite". VNU Journal of Science: Natural Sciences and Technology 34, n. 3 (24 settembre 2018). http://dx.doi.org/10.25073/2588-1140/vnunst.4770.

Testo completo
Abstract (sommario):
In this study, we synthesized graphene oxide (GO) by modified low temperature Hummer’s method and in situ hydrothermally grown TiO­2 nanotube (TNT) onGO sheet. Transmission electron microscopic (TEM) images showed the homogeneous formation of TNT with the mean diameter of ~8 nm and the co-existence of TNT and GO in the composite sample. X-ray differaction pattern of GO indicated the successful fabrication. The UV-vis measurement with methylene blue indicated the improvement of physical adsorption of the composite samples. Keywords TNTs, GO, physical adsorption, composite References [1] C. Dette et al., “TiO¬2 Anatase with a Bandgap in the Visible Region,” Nano Lett., vol. 14, no. 11, pp. 6533–6538, 2014.[2] A. Ibhadon and P. Fitzpatrick, “Heterogeneous Photocatalysis: Recent Advances and Applications,” Catalysts, vol. 3, no. 1, pp. 189–218, 2013.[3] Y. T. Liang, B. K. Vijayan, K. A. Gray, and M. C. Hersam, “Minimizing graphene defects enhances titania nanocomposite-based photocatalytic reduction of CO2 for improved solar fuel production,” Nano Letters, vol. 11, no. 7. pp. 2865–2870, 2011.[4] C. L. Wong, Y. N. Tan, and A. R. Mohamed, “A review on the formation of titania nanotube photocatalysts by hydrothermal treatment,” Journal of Environmental Management, vol. 92, no. 7. pp. 1669–1680, 2011.[5] Z. Bo et al., “Synthesis and stabilization of small Pt nanoparticles on TiO2partially masked by SiO2,” Appl. Catal. A Gen., vol. 551, pp. 122–128, 2018.[6] K. Bubacz, B. Tryba, and A. W. Morawski, “The role of adsorption in decomposition of dyes on TiO 2 and N-modified TiO 2 photocatalysts under UV and visible light irradiations,” Materials Research Bulletin, vol. 47, no. 11. pp. 3697–3703, 2012.[7] M. Faraji and N. Mohaghegh, “Ag/TiO2-nanotube plates coated with reduced graphene oxide as photocatalysts,” Surf. Coatings Technol., vol. 288, pp. 144–150, 2016.[8] L. C. Sim, and K. H. Leong, “Graphene oxide and Ag engulfed TiO2 nanotube arrays for enhanced electron mobility and visiblelight-driven photocatalytic performance,” Journal of Materials Chemistry A, vol. 2, no. 15. pp. 5315–5322, 2014.[9] C.-Y. Tsai, C.-W. Liu, C. Fan, H.-C. Hsi, and T.-Y. Chang, “Synthesis of a SnO 2 /TNT Heterojunction Nanocomposite as a High-Performance Photocatalyst,” J. Phys. Chem. C, vol. 121, no. 11, pp. 6050–6059, 2017.[10] S. Gayathri, M. Kottaisamy, and V. Ramakrishnan, “Facile microwave-assisted synthesis of titanium dioxide decorated graphene nanocomposite for photodegradation of organic dyes,” AIP Adv., vol. 5, no. 12, 2015.[11] H. Tao, X. Liang, Q. Zhang, and C. T. Chang, “Enhanced photoactivity of graphene/titanium dioxide nanotubes for removal of Acetaminophen,” Appl. Surf. Sci., vol. 324, pp. 258–264, 2015.[12] M.Z. Wang , F. X. Liang , B. Nie , L.H. Zeng , L. X. Zheng , Peng Lv , Y. Q. Yu , C. Xie, Y. Y. Li, “TiO2 Nanotube Array/Monolayer Graphene Film Schottky Junction Ultraviolet Light Photodetectors." Part. Part. Character. Syst., vol. 30, 7, pp. 630-636, 2013. [13] J. Yu, T. Ma, and S. Liu, “Enhanced photocatalytic activity of mesoporous TiO 2 aggregates by embedding carbon nanotubes as electron-transfer channel,” Phys. Chem. Chem. Phys., vol. 13, no. 8, pp. 3491–3501, 2011.[14] H. L. Poh, F. Šaněk, A. Ambrosi, G. Zhao, Z. Sofer, and M. Pumera, “Graphenes prepared by Staudenmaier, Hofmann and Hummers methods with consequent thermal exfoliation exhibit very different electrochemical properties,” Nanoscale, vol. 4, no. 11, p. 3515, 2012.[15] P. B. Arthi G and L. BD, “A Simple Approach to Stepwise Synthesis of Graphene Oxide Nanomaterial,” J. Nanomed. Nanotechnol., vol. 06, no. 01, 2015.[16] M. Faraldos and A. Bahamonde, “Environmental applications of titania-graphene photocatalysts,” Catal. Today, vol. 285, pp. 13–28, 2017.
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Maryna Antoshko. "Introducing China's traditional music genres to the world". NATIONAL ACADEMY OF MANAGERIAL STAFF OF CULTURE AND ARTS HERALD, n. 4 (15 dicembre 2020). http://dx.doi.org/10.32461/2226-3209.4.2020.219138.

Testo completo
Abstract (sommario):
The purpose of the article is to study the presentation of traditional Chinese music genres in the world. The methodology of the study is to use historical and biographical methods in the study of this topic. The scientific novelty of the article is to explore the expediency of presenting traditional Chinese music genres in the world. After all, this question reflects both the traditions and customs of the country and raises the names of scholars of Chinese culture. The presentation of Chinese art is due to the holding of opera festivals that influence the culture of the whole country. The emergence of new theatrical acts and performances also influenced China's outlook. Conclusions. The introduction of traditional Chinese music genres in the world is due to the development of culture and education in the country. The system of thinking of Chinese culture is based on the ancient philosophy of the country. Musical art is in constant search: the nature of sound, timbre palette, forms, combining national motives. Through the combination of national traits, country philosophy, religious tendencies, elements of vocal and instrumental folklore, theater and composition, and piano culture, China's musical piano culture has become well-known in the world. It was the Suetan School and Yuege's educational system that formed the basis for the development of Chinese musical culture. Speaking about the nature of Chinese music, it should be emphasized that it has its intonation-melodic nature, which is different from European music samples. Chinese people became acquainted with the performance of European works through touring. In the early ’70s began to reform the conservatories into musical institutes. For example, music institutions such as the conservatories in Wuhan (Hubei), Shenyang (Liaoning), Xi'an (Shaanxi), and Chengdu (Sichuan) have undergone these changes. During this period (the ’70s), the flowering of Chinese music education began, orchestras, amateur bands appeared, research aroused curiosity, and music magazines began to be published. Teachers such as Zhou Xiaoyan, Lan Yushu, Yu Yixuan, Shen Xiang, Xi Ggui, Wen Quecheng, Li Zhishui, Wei Chixian, Man Jiangxi, Sung Xin, Hu Yan, Gao Zhilan, Do Shinji, and others start their creative activity. The revitalization of music education is in the twentieth century, which causes the development and rethinking of new turns in educational processes. The processes of formation and development of the Chinese music education system are reflected in the works of Wang Yuhe, Liu Pei, Yang Bohua, stylistic features of musical art were interested in F. Arzamanov, V. Vakulishin, Lin Hai, Liu Da-jung, Ma Gesun, Sun Tsunin, In Gen- Ira, Chang Ling, Yang Xiao Xu and more. Chinese education has interested such scholars as: Ding Yun, Yang Bohua. It should be said that much attention was paid to education, as evidenced by the work of scientists. Turning to the historical facts, it becomes known that music education began to develop during the Tang era (VII-X centuries). This led to the emergence of performing schools and the establishment of educational institutions, which allowed to expand the representation of traditional genres of the world.
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Thanh Huyen, Le, Dao Sy Duc, Nguyen Xuan Hoan, Nguyen Huu Tho e Nguyen Xuan Viet. "Synthesis of Fe3O4-Reduced Graphene Oxide Modified Tissue-Paper and Application in the Treatment of Methylene Blue". VNU Journal of Science: Natural Sciences and Technology 35, n. 3 (20 settembre 2019). http://dx.doi.org/10.25073/2588-1140/vnunst.4883.

Testo completo
Abstract (sommario):
Graphene-based composites have received a great deal of attention in recent year because the presence of graphene can enhance the conductivity, strength of bulk materials and help create composites with superior qualities. Moreover, the incorporation of metal oxide nanoparticles such as Fe3O4 can improve the catalytic efficiency of composite material. In this work, we have synthesized a composite material with the combination of reduced graphene oxide (rGO), and Fe3O4 modified tissue-paper (mGO-PP) via a simple hydrothermal method, which improved the removal efficiency of the of methylene blue (MB) in water. MB blue is used as the model of contaminant to evaluate the catalytic efficiency of synthesized material by using a Fenton-like reaction. The obtained materials were characterized by SEM, XRD. The removal of materials with methylene blue is investigated by UV-VIS spectroscopy, and the result shows that mGO-PP composite is the potential composite for the color removed which has the removal efficiency reaching 65% in acetate buffer pH = 3 with the optimal time is 7 h. Keywords Graphene-based composite, methylene blue, Fenton-like reaction. References [1] Ma Joshi, Rue Bansal, Reng Purwar, Colour removal from textile effluents, Indian Journal of Fibre & Textile Research, 29 (2004) 239-259 http://nopr.niscair.res.in/handle/123456789/24631.[2] Kannan Nagar, Sundaram Mariappan, Kinetics and mechanism of removal of methylene blue by adsorption on various carbons-a comparative study, Dyes and pigments, 51 (2001) 25-40 https://doi.org/10.1016/S0143-7208(01)00056-0.[3] K Rastogi, J. N Sahu, B. C Meikap, M. N Biswas, Removal of methylene blue from wastewater using fly ash as an adsorbent by hydrocyclone, Journal of hazardous materials, 158 (2008) 531-540.https://doi.org/10.1016/j.jhazmat.2008.01. 105.[4] Qin Qingdong, Ma Jun, Liu Ke, Adsorption of anionic dyes on ammonium-functionalized MCM-41, Journal of Hazardous Materials, 162 (2009) 133-139 https://doi.org/10.1016/j.jhazmat. 2008.05.016.[5] Mui Muruganandham, Rps Suri, Sh Jafari, Mao Sillanpää, Lee Gang-Juan, Jaj Wu, Muo Swaminathan, Recent developments in homogeneous advanced oxidation processes for water and wastewater treatment, International Journal of Photoenergy, 2014 (2014). http://dx. doi.org/10.1155/2014/821674.[6] Herney Ramirez, Vicente Miguel , Madeira Luis Heterogeneous photo-Fenton oxidation with pillared clay-based catalysts for wastewater treatment: a review, Applied Catalysis B: Environmental, 98 (2010) 10-26 https://doi.org/ 10.1016/j.apcatb.2010.05.004.[7] Guo Rong, Jiao Tifeng, Li Ruifei, Chen Yan, Guo Wanchun, Zhang Lexin, Zhou Jingxin, Zhang Qingrui, Peng Qiuming, Sandwiched Fe3O4/carboxylate graphene oxide nanostructures constructed by layer-by-layer assembly for highly efficient and magnetically recyclable dye removal, ACS Sustainable Chemistry & Engineering, 6 (2017) 1279-1288 https://doi.org/10.1021/acssuschemeng.7b03635.[8] Sun Chao, Yang Sheng-Tao, Gao Zhenjie, Yang Shengnan, Yilihamu Ailimire, Ma Qiang, Zhao Ru-Song, Xue Fumin, Fe3O4/TiO2/reduced graphene oxide composites as highly efficient Fenton-like catalyst for the decoloration of methylene blue, Materials Chemistry and Physics, 223 (2019) 751-757 https://doi.org/ 10.1016/j.matchemphys.2018.11.056.[9] Guo Hui, Ma Xinfeng, Wang Chubei, Zhou Jianwei, Huang Jianxin, Wang Zijin, Sulfhydryl-Functionalized Reduced Graphene Oxide and Adsorption of Methylene Blue, Environmental Engineering Science, 36 (2019) 81-89 https://doi. org/10.1089/ees.2018.0157.[10] Zhao Lianqin, Yang Sheng-Tao, Feng Shicheng, Ma Qiang, Peng Xiaoling, Wu Deyi, Preparation and application of carboxylated graphene oxide sponge in dye removal, International journal of environmental research and public health, 14 (2017) 1301 https://doi.org/10.3390/ijerph14111301.[11] Yu Dandan, Wang Hua, Yang Jie, Niu Zhiqiang, Lu Huiting, Yang Yun, Cheng Liwei, Guo Lin, Dye wastewater cleanup by graphene composite paper for tailorable supercapacitors, ACS applied materials & interfaces, 9 (2017) 21298-21306 https://doi.org/10.1021/acsami.7b05318.[12] Wang Hou, Yuan Xingzhong, Wu Yan, Huang Huajun, Peng Xin, Zeng Guangming, Zhong Hua, Liang Jie, Ren MiaoMiao, Graphene-based materials: fabrication, characterization and application for the decontamination of wastewater and wastegas and hydrogen storage/generation, Advances in Colloid and Interface Science, 195 (2013) 19-40 https://doi. org/10.1016/j.cis.2013.03.009.[13] Marcano Daniela C, Kosynkin Dmitry V, Berlin Jacob M, Sinitskii Alexander, Sun Zhengzong, Slesarev Alexander, Alemany Lawrence B, Lu Wei, Tour James M, Improved synthesis of graphene oxide, ACS nano, 4 (2010) 4806-4814 https://doi.org/10.1021/nn1006368.[14] Zhang Jiali, Yang Haijun, Shen Guangxia, Cheng Ping, Zhang Jingyan, Guo Shouwu, Reduction of graphene oxide via L-ascorbic acid, Chemical Communications, 46 (2010) 1112-1114 http://doi. org/10.1039/B917705A [15] Gong Ming, Zhou Wu, Tsai Mon-Che, Zhou Jigang, Guan Mingyun, Lin Meng-Chang, Zhang Bo, Hu Yongfeng, Wang Di-Yan, Yang Jiang, Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis, Nature communications, 5 (2014) 4695 https:// doi.org/10.1038/ncomms5695.[16] Wu Zhong-Shuai, Yang Shubin, Sun Yi, Parvez Khaled, Feng Xinliang, Müllen Klaus, 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction, Journal of the American Chemical Society, 134 (2012) 9082-9085 https://doi.org/10.1021/ja3030565.[17] Nguyen Son Truong, Nguyen Hoa Tien, Rinaldi Ali, Nguyen Nam Van, Fan Zeng, Duong Hai Minh, Morphology control and thermal stability of binderless-graphene aerogels from graphite for energy storage applications, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 414 (2012) 352-358 https://doi.org/ 10.1016/j.colsurfa.2012.08.048.[18] Deng Yang, Englehardt James D, Treatment of landfill leachate by the Fenton process, Water research, 40 (2006) 3683-3694 https://doi.org/ 10.1016/j.watres.2006.08.009.
Gli stili APA, Harvard, Vancouver, ISO e altri

Libri sul tema "Shenyang bo li chang"

1

chang, Shenyang bo li. 沈阳玻璃厂志, 1937-1984. Shenyang: Shenyang bo li chang, 1985.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

1628-1703, Perrault Charles, e Maoshizi illustrator, a cura di. Tong hua meng gong chang: Bo li xie gong zhu. Xianggang: Chuang zao guan, 2017.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

qing, Shui shang. Zhi chang qian fu xin li xue zhi chang xin li zhang kong shu zhi chang bo yi xin ji xue da quan ji. Yin chuan: Ning xia ren min chu ban she, 2012.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

e, Di qi. Ha li bo te ma gua mo fa xue yuan. Bei jing: Zhong guo qing nian chu ban she, 2006.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Warner, Adam. Qi quan bo dong lü jiao yi: Bo dong shi chang zhong de ying li ce lüe = Options volatility trading. Beijing: Ji xie gong ye chu ban she, 2016.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

author, Li Jinzeng 1964, e Chen Yongyun author, a cura di. Shuo se chang tian: Ningxia bo wu guan cang li shi wen wu ji cui. Beijing: Wen wu chu ban she, 2013.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

(China), Guo li li shi bo wu guan. Du hai san jia shou cang zhan: Zhang Daqian, Pu Xinyu, Huang Junbi = Collector's exhibition of three masters : Chang Dai-chʻien, Pʻu Hsin-yü, Huang Chün-pi. Taibei Shi: Guo li li shi bo wu guan, 1993.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

author, Ai Milei, Ou Fulei author, Shui Ping author, Katy author e Wang Zhengyi photographer, a cura di. WECK bo li guan liao li: Sha la, bian dang, chang bei cai, tian dian, guo jiang de mei hao yin shi ti an. Xinbei Shi Xindian Qu: Ye ren wen hua gu fen you xian gong si, 2015.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Yunjing, Xiao, a cura di. Zheng jiu xiao hua li: Yi xue bo shi jiao ni jiu chang wei, pai du su de 24 ge hao xi guan! Taibei Shi: San cai wen hua chu ban shi ye you xian gong si, 2011.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

L, Faucett, e Wang Yuan bian zhu, a cura di. Li bo da meng: Rip van winkle : guo ji ying wen gu shi jing xuan zhi 900 chang yong zi : 900 word level. Tai bei shi: Yuan dong, 1999.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!

Vai alla bibliografia