Indice
Letteratura scientifica selezionata sul tema "Séparation de l'eau"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Séparation de l'eau".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Séparation de l'eau"
Escudier, J. L., B. Gillery, H. Ojeda e et F. Etchebarne. "Maitrise de la salinité des eaux d'irrigation pour la viticulture". BIO Web of Conferences 12 (2019): 01010. http://dx.doi.org/10.1051/bioconf/20191201010.
Testo completoBélanger, N., W. H. Hendershot, M. Bouchard e S. Jolicoeur. "Identification des compartiments responsables de la qualité des eaux de surface d'un petit bassin versant du centre du Nouveau-Brunswick (Canada): application et analyse du modèle hydrochimique EMMA". Revue des sciences de l'eau 11, n. 1 (12 aprile 2005): 117–37. http://dx.doi.org/10.7202/705300ar.
Testo completoTesi sul tema "Séparation de l'eau"
Lafleur, Matthieu. "Développement des membranes pour la séparation in-situ de l'eau à hautes températures". Master's thesis, Université Laval, 2018. http://hdl.handle.net/20.500.11794/31686.
Testo completoThe release of carbon dioxide gas (CO₂) is becoming increasingly alarming and requires that concrete actions get implemented as fast as possible in order to reduce future impacts. One of the solutions could be the catalytic conversion of CO₂ into value-added products like dimethyl ether (DME), which can be used as a clean energy vector. Unfortunately, the direct catalytic hydrogenation of CO₂ isn’t thermodynamically favoured if done in a conventional reactor, because of the coproduced water. That’s why this master thesis will work on an in-situ method to remove the produced water from the reactor. This upgrade is essential for an economically viable process to synthesize DME from CO₂. Despite extensive research in the field of in-situ removal of water, very few seem to be able to achieve promising results at the high temperatures required for CO₂ conversion (≈250˚C). An interesting solution seems to lie in a water permselective zeolite membrane made of hydroxy-sodalite (hydroxy-SOD). According to the literature, that zeolite would be capable of withstanding the harsh reaction conditions while being able to separate water with excellent selectivity. However, when made into a membrane, their water selectivity doesn’t seem to reproduce well. This is caused by defects in the synthesized membrane that are cause by less than optimal conventional synthesis methods. That is why this master’s project address the problem by the development of a new membrane synthesis technique for hydroxy-SOD by ‘’pore-plugging’’, which attempt to prevent membrane defects. This technique consists in the mechanical insertion of engineered hydroxy-SOD seeds at a precise location of asymmetric ceramic support. These seeds are then grown by subsequent hydrothermal synthesis up to the point that the smaller pores of the support are completely filled. That results in a really thin composite membrane of hydroxy-SOD zeolite having minimal number of defects. In order to optimize the ‘’pore-plugging’’ technique, a series of synthesis parameters have been examined and improved for both the seeds and the membrane production. This led to the development of a protocol allowing the synthesis of a hydroxy-SOD membrane having water selectivity (SH2O/H2) of 1.4 and a permeance H2O of 1.26 x 10⁻⁷ mol Pa⁻¹ m⁻² s⁻¹ at 250 °C.
Krause, Kevin. "Caractérisation infrarouge operando des électrolyseurs à membrane électrolytique polymère pour la séparation de l'eau". Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0022.
Testo completoUnderstanding and improving mass and ionic transport mechanisms within the membrane used in polymer electrolyte membrane (PEM) water splitting electrolyzers is vital for achieving improved efficiencies that would enable the use of water electrolysis in sustainable energy infrastructures. A better understanding of mass and ion transport within the PEM are essential to achieving the improved performance and efficiencies necessary for wide-scale commercialization of these devices. The work from this thesis aims to improve characterization methods for measuring PEM hydration using an operating microfluidic PEM electrolysis chip coupled with operando infrared (IR) spectroscopy. This development of this thesis is organized through two parts.In part one and prior to the development of the microfluidic electrolyzer, the experimental setup for IR characterization via Fourier transform infrared spectroscopy (FTIR) and IR thermography was developed. This setup was tested through a microfluidic chip designed for semi-transparency in mid-wave IR light. Two exothermic acid-base reactions were imaged in the chip to simultaneously quantify heat and mass transport in the microfluidic channel. Concentration fields of each chemical species and thermal fields of the chemical reactions were resolved from the acquired IR images. Experimental results were used to validate an advection diffusion simulation of the chemical reaction within a meshed replica of the microfluidic chip, for which there was a strong agreement between the results from each dataset.In part two, the methods from part one were honed for the fabrication of the first microfluidic PEM water electrolyzer for transmission-based IR characterization. The water content within the PEM of the microfluidic water electrolyzer was characterized through two operando IR spectroscopy setups. The first IR experimental setup utilized a synchrotron FTIR spectroscopy setup, where the water content of the PEM was quantified using IR for the first time, albeit only at a single point. The second microfluidic PEM electrolyzer setup used a broadband IR source combined with other techniques to distinguish contributions from ohmic, kinetic, and mass transport losses while acquiring IR images. Images were acquired during potentiostatic operation for a range of anolyte concentrations. Electrochemical impedance spectroscopy (EIS) and distribution of relaxation times (DRT) unveiled that higher anolyte concentrations were accompanied by reduced ohmic losses but higher kinetic and mass transport losses. The higher mass transport losses were investigated through images averaged over comparable time scales to EIS and DRT results, and implied that inefficient gas removal occurred at the cathode. These effects were further investigated through the PEM hydration (λ_(H_2 O)) via three characteristic regions where the adjacent channels were either wet, dry, or a mix of both. The local channel wetness was observed to strongly affect the PEM’s hydration through gradients that manifested between cathode and anode channels.Results from this thesis show the potential of transmission-based IR techniques for elucidating transport mechanisms in PEMs of operating microfluidic electrolyzers. Implementing layers that are traditionally implemented in fuel cells and electrolyzers for gas-liquid management into the microfluidic PEM electrolyzer could greatly improve results obtained from the presented methods. Consequently, IR techniques could potentially be used to achieve the contactless quantification of phenomena such as electro- or thermo-osmotic drag. The findings in this thesis provide valuable insights for membrane characterization in electrochemical devices with integrated PEMs, and will inform the next generation of electrolyzer design
Turgeon, Pierre-Alexandre. "Étude de la séparation et des mécanismes de conversion des isomères de spins de l'eau". Thèse, Université de Sherbrooke, 2017. http://hdl.handle.net/11143/11079.
Testo completoElgendi, Ayman Taha. "Préparation et étude de Membranes Asymétriques Polyalcoxyétherimides (PEI) pour la séparation de composés organiques de l'eau". Thesis, Vandoeuvre-les-Nancy, INPL, 2010. http://www.theses.fr/2010INPL046N/document.
Testo completoThe work aimed to prepare co-polyalkylether-imide (PEI) asymmetric membranes in order to get high flux water selective polymeric membranes suitable for the separation of organic molecules from aqueous mixtures by membrane processes. The separation of liquid mixtures (i.e. toluene – heptane, water – ethanol and low concentrated organic solute in aqueous solutions) was studied by pervaporation (PV) and by nanofiltration (NF) using homemade integrally skinned asymmetric PEI membranes. These membranes were prepared under controlled experimental conditions from DMF-H2O solutions of the corresponding polyamic acid (PAA) with respect to the ternary phase diagram; after the wet phase inversion in a water bath, the PAA membranes were imidized by thermal treatment. The membrane physical properties (IR, TGA) were characterized and the related morphologies, recorded by SEM, were used to optimize the asymmetric membrane preparation to improve the separation properties by tuning the thickness of the dense top layer. The performances of the pervaporation and nanofiltration separations were examined in the light of the influence of three sets of parameters, i.e. membrane elaboration parameters (dope composition, inversion bath temperature), experimental permeation conditions (temperature, applied pressure) and solute molecular properties (molecular weight, radius, polarity). The PV results showed that tight asymmetric PEI membranes could well be obtained, giving rise to a molecular selectivity in agreement with the solution-diffusion model. The NF results obtained with diluted organics in water (≈500ppm) have shown that the degree of rejection of the organic solutes was strongly linked to the PEI elaboration conditions and to the solute properties. The molecular cutoff values (MWCO) of the membranes were determined with a series of polyethyleneglycol (400 < Mw (g/mole) <6000) for an applied NF pressure up to 10 Bar; it was shown that the PEI membrane MWCO could be ranged between 400 and 1000g/mol at 30°C. It was also found with some PEI membranes that high permeation fluxes together with good separation selectivity could be obtained leading to interesting performances compared to literature data. Thus, it is expected that the development of these new asymmetric block copolyimide rubbery membranes might give rise to high performance membrane systems for applications in liquid-liquid separations, in particular in nanofiltration separations
Magnet, Cécilia. "Mécanismes de capture de nanoparticules magnétiques : application à la purification de l'eau". Phd thesis, Université Nice Sophia Antipolis, 2013. http://tel.archives-ouvertes.fr/tel-00932715.
Testo completoKuswandi, M. "Procédés de séparation en milieu dispersé : régénération du triéthylène glycol par extraction de l'eau à l'aide d'un brouillard. Etude sur pilote et simulation. Séparation d'hydrocarbures par membranes liquides émulsionnées". Compiègne, 2000. http://www.theses.fr/2000COMP1275.
Testo completoTolod, Kristine. "Photocatalyseurs actifs dans le visible pour l'oxydation de l'eau : vers les bioraffineries solaires". Thesis, Lyon, 2019. http://www.theses.fr/2019LYSE1053.
Testo completoPhotoelectrochemical (PEC) water splitting is a direct way of producing a solar fuel like hydrogen from water. The bottleneck of this process is in the photoanode, which is responsible for the water oxidation side of the reaction1,2. In this work, the use of BiVO4 as a photoanode was extensively studied in order to improve its photoactivity. The optimization of BiVO4 photoanode synthesis via thin film electrodeposition on FTO was performed. The factors affecting the photoelectrochemical activity such as the electrodeposition time, ratio of the Bi-KI to benzoquinone-EtOH in the deposition bath, and the calcination temperature, have been investigated by using the Central Composite Design of Experiments.Surface states on the BiVO4 surface give rise to defect levels, which can mediate electron-hole recombination via the Shockley-Read-Hall mechanism5. In order to protect the BiVO4 surface and minimize the inefficiencies due to electron-hole recombination and passivate the surface states, ultrathin overlayers of Al2O3 and TiO2 were deposited to the BiVO4 thin film electrodes in an ALD-like manner. A photocurrent density of 0.54 mA/cm2 at 1.23 V vs RHE was obtained for the 2 cycles Al2O3-modified BiVO4, which was a 54% improvement from the bare BiVO4 that demonstrated a photocurrent density of 0.35 mA/cm2 at 1.23 V vs RHE. A 15% increase in stability of the Al2O3- modified BiVO4 electrode was also observed over 7.5 hours of continuous irradiation. Moreover, through surface capacitance measurements, it was shown that the Al2O3 overlayer was indeed passivating the surface states of the BiVO4 electrodes. The nature of the BiVO4 surface was studied by investigating the reactivity of powder BiVO4 with a chemical titrant. The existence of surface hydroxyl groups on BiVO4 was confirmed and quantified (max 1.5 OH/nm2) via chemical titration. The reaction of the BiVO4 powder with one pulse of AlMe3 and 1 pulse of H2O showed that there were 1.2 molecules of CH4 evolved per Bi-OH. In this work, we were able to highlight which factors are important in the synthesis of BiVO4, and how they affect the resulting photoactivity. We have also achieved the passivation of the BiVO4 surface states using Al2O3, which is not well-explored in literature. Moreover, we were able to probe and discuss the nature of the BiVO4 surface. This is a very fundamental knowledge and the first report of such, to the best of our knowledge. A good understanding of this important semiconductor surface and its interactions will aid in the design of a more efficient BiVO4 photoanode
Smagghe, Freddy. "Séparation des acides tartrique et malique par extraction liquide-liquide. Valorisation et dépollution des effluents viti-vinicoles". Toulouse, INPT, 1991. http://www.theses.fr/1991INPT040G.
Testo completoHeinze, Sylver. "Etude de l'électrolyse bipolaire de l'eau tritiée appliquée à la séparation des isotopes de l'hydrogène par perméation électrochimique à travers des membranes d'alliage Pd-Ag". Dijon, 2000. http://www.theses.fr/2000DIJOS008.
Testo completoCouffin, Nathalie. "Elimination de composes organohalogenes volatils a l'etat de traces dans l'eau par distillation membranaire sous vide". Toulouse, INSA, 2000. http://www.theses.fr/2000ISAT0007.
Testo completo