Letteratura scientifica selezionata sul tema "Semisimple algebraic groups"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Semisimple algebraic groups".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Semisimple algebraic groups"
Nahlus, Nazih. "Homomorphisms of Lie Algebras of Algebraic Groups and Analytic Groups". Canadian Mathematical Bulletin 38, n. 3 (1 settembre 1995): 352–59. http://dx.doi.org/10.4153/cmb-1995-051-7.
Testo completoDe Clercq, Charles. "Équivalence motivique des groupes algébriques semisimples". Compositio Mathematica 153, n. 10 (27 luglio 2017): 2195–213. http://dx.doi.org/10.1112/s0010437x17007369.
Testo completoDe Clercq, Charles, e Skip Garibaldi. "Tits p-indexes of semisimple algebraic groups". Journal of the London Mathematical Society 95, n. 2 (16 gennaio 2017): 567–85. http://dx.doi.org/10.1112/jlms.12025.
Testo completoGordeev, Nikolai, Boris Kunyavskiĭ e Eugene Plotkin. "Word maps on perfect algebraic groups". International Journal of Algebra and Computation 28, n. 08 (dicembre 2018): 1487–515. http://dx.doi.org/10.1142/s0218196718400052.
Testo completoCassidy, Phyllis Joan. "The classification of the semisimple differential algebraic groups and the linear semisimple differential algebraic Lie algebras". Journal of Algebra 121, n. 1 (febbraio 1989): 169–238. http://dx.doi.org/10.1016/0021-8693(89)90092-6.
Testo completoAvdeev, R. S. "On solvable spherical subgroups of semisimple algebraic groups". Transactions of the Moscow Mathematical Society 72 (2011): 1–44. http://dx.doi.org/10.1090/s0077-1554-2012-00192-7.
Testo completoProcesi, Claudio. "Book Review: Conjugacy classes in semisimple algebraic groups". Bulletin of the American Mathematical Society 34, n. 01 (1 gennaio 1997): 55–57. http://dx.doi.org/10.1090/s0273-0979-97-00689-7.
Testo completoVoskresenskii, V. E. "Maximal tori without effect in semisimple algebraic groups". Mathematical Notes of the Academy of Sciences of the USSR 44, n. 3 (settembre 1988): 651–55. http://dx.doi.org/10.1007/bf01159125.
Testo completoMohrdieck, S. "Conjugacy classes of non-connected semisimple algebraic groups". Transformation Groups 8, n. 4 (dicembre 2003): 377–95. http://dx.doi.org/10.1007/s00031-003-0429-3.
Testo completoBreuillard, Emmanuel, Ben Green, Robert Guralnick e Terence Tao. "Strongly dense free subgroups of semisimple algebraic groups". Israel Journal of Mathematics 192, n. 1 (15 marzo 2012): 347–79. http://dx.doi.org/10.1007/s11856-012-0030-3.
Testo completoTesi sul tema "Semisimple algebraic groups"
Mohrdieck, Stephan. "Conjugacy classes of non-connected semisimple algebraic groups". [S.l. : s.n.], 2000. http://www.sub.uni-hamburg.de/disse/172/diss.pdf.
Testo completoHazi, Amit. "Semisimple filtrations of tilting modules for algebraic groups". Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/271774.
Testo completoKenneally, Darren John. "On eigenvectors for semisimple elements in actions of algebraic groups". Thesis, University of Cambridge, 2010. https://www.repository.cam.ac.uk/handle/1810/224782.
Testo completoGandhi, Raj. "Oriented Cohomology Rings of the Semisimple Linear Algebraic Groups of Ranks 1 and 2". Thesis, Université d'Ottawa / University of Ottawa, 2021. http://hdl.handle.net/10393/42566.
Testo completoMaccan, Matilde. "Sous-schémas en groupes paraboliques et variétés homogènes en petites caractéristiques". Electronic Thesis or Diss., Université de Rennes (2023-....), 2024. https://ged.univ-rennes1.fr/nuxeo/site/esupversions/2e27fe72-c9e0-4d56-8e49-14fc84686d6c.
Testo completoThis thesis brings to an end the classification of parabolic subgroup schemes of semisimple groups over an algebraically closed field, focusing on characteristic two and three. First, we present the classification under the assumption that the reduced part of these subgroups is maximal; then we proceed to the general case. We arrive at an almost uniform description: with the exception of a group of type G₂ in characteristic two, any parabolic subgroup scheme is obtained by multiplying reduced parabolic subgroups by kernels of purely inseparable isogenies, then taking the intersection. In conclusion, we discuss some geometric implications of this classification
Oriente, Francesco. "Classifying semisimple orbits of theta-groups". Doctoral thesis, Università degli studi di Trento, 2012. https://hdl.handle.net/11572/368303.
Testo completoOriente, Francesco. "Classifying semisimple orbits of theta-groups". Doctoral thesis, University of Trento, 2012. http://eprints-phd.biblio.unitn.it/731/1/tesi.pdf.
Testo completoLampetti, Enrico. "Nilpotent orbits in semisimple Lie algebras". Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/23595/.
Testo completoNishiyama, Kyo. "Representations of Weyl groups and their Hecke algebras on virtual character modules of a semisimple Lie group". 京都大学 (Kyoto University), 1986. http://hdl.handle.net/2433/86366.
Testo completoAthapattu, Mudiyanselage Chathurika Umayangani Manike Athapattu. "Chevalley Groups". OpenSIUC, 2016. https://opensiuc.lib.siu.edu/theses/1986.
Testo completoLibri sul tema "Semisimple algebraic groups"
Humphreys, James E. Conjugacy classes in semisimple algebraic groups. Providence, R.I: American Mathematical Society, 1995.
Cerca il testo completoHiss, G. Imprimitive irreducible modules for finite quasisimple groups. Providence, Rhode Island: American Mathematical Society, 2015.
Cerca il testo completoKapovich, Michael. The generalized triangle inequalities in symmetric spaces and buildings with applications to algebra. Providence, R.I: American Mathematical Society, 2008.
Cerca il testo completo1959-, McGovern William M., a cura di. Nilpotent orbits in semisimple Lie algebras. New York: Van Nostrand Reinhold, 1993.
Cerca il testo completoDoran, Robert S., 1937- editor of compilation, Friedman, Greg, 1973- editor of compilation e Nollet, Scott, 1962- editor of compilation, a cura di. Hodge theory, complex geometry, and representation theory: NSF-CBMS Regional Conference in Mathematics, June 18, 2012, Texas Christian University, Fort Worth, Texas. Providence, Rhode Island: American Mathematical Society, 2013.
Cerca il testo completo1938-, Griffiths Phillip, e Kerr Matthew D. 1975-, a cura di. Hodge theory, complex geometry, and representation theory. Providence, Rhode Island: Published for the Conference Board of the Mathematical Sciences by the American Mathematical Society, 2013.
Cerca il testo completoBenkart, Georgia. Stability in modules for classical lie algebras: A constructive approach. Providence, R.I., USA: American Mathematical Society, 1990.
Cerca il testo completoStrade, Helmut, Thomas Weigel, Marina Avitabile e Jörg Feldvoss. Lie algebras and related topics: Workshop in honor of Helmut Strade's 70th birthday : lie algebras, May 22-24, 2013, Università degli studi di Milano-Bicocca, Milano, Italy. Providence, Rhode Island: American Mathematical Society, 2015.
Cerca il testo completoHumphreys, James E. Conjugacy Classes in Semisimple Algebraic Groups. American Mathematical Society, 1995.
Cerca il testo completoGille, Philippe. Groupes algébriques semi-simples en dimension cohomologique ≤2: Semisimple algebraic groups in cohomological dimension ≤2. Springer, 2019.
Cerca il testo completoCapitoli di libri sul tema "Semisimple algebraic groups"
Onishchik, Arkadij L., e Ernest B. Vinberg. "Complex Semisimple Lie Groups". In Lie Groups and Algebraic Groups, 136–220. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-74334-4_4.
Testo completoOnishchik, Arkadij L., e Ernest B. Vinberg. "Real Semisimple Lie Groups". In Lie Groups and Algebraic Groups, 221–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-74334-4_5.
Testo completoBrown, Ken A., e Ken R. Goodearl. "Primer on Semisimple Lie Algebras". In Lectures on Algebraic Quantum Groups, 39–44. Basel: Birkhäuser Basel, 2002. http://dx.doi.org/10.1007/978-3-0348-8205-7_5.
Testo completoLakshmibai, V., e Justin Brown. "Representation Theory of Semisimple Algebraic Groups". In Texts and Readings in Mathematics, 153–63. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1393-6_11.
Testo completoLakshmibai, V., e Justin Brown. "Representation Theory of Semisimple Algebraic Groups". In Texts and Readings in Mathematics, 183–96. Gurgaon: Hindustan Book Agency, 2009. http://dx.doi.org/10.1007/978-93-86279-41-5_11.
Testo completoBrown, Ken A., e Ken R. Goodearl. "Generic Quantized Coordinate Rings of Semisimple Groups". In Lectures on Algebraic Quantum Groups, 59–67. Basel: Birkhäuser Basel, 2002. http://dx.doi.org/10.1007/978-3-0348-8205-7_7.
Testo completoMargulis, Gregori Aleksandrovitch. "Normal Subgroups and “Abstract” Homomorphisms of Semisimple Algebraic Groups Over Global Fields". In Discrete Subgroups of Semisimple Lie Groups, 258–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-51445-6_9.
Testo completoLanglands, R. "On the classification of irreducible representations of real algebraic groups". In Representation Theory and Harmonic Analysis on Semisimple Lie Groups, 101–70. Providence, Rhode Island: American Mathematical Society, 1989. http://dx.doi.org/10.1090/surv/031/03.
Testo completoGuivarc’h, Yves, Lizhen Ji e J. C. Taylor. "Extension to Semisimple Algebraic Groups Defined Over a Local Field". In Compactification of Symmetric Spaces, 231–36. Boston, MA: Birkhäuser Boston, 1998. http://dx.doi.org/10.1007/978-1-4612-2452-5_15.
Testo completoAlperin, J. L., e Rowen B. Bell. "Semisimple Algebras". In Groups and Representations, 107–36. New York, NY: Springer New York, 1995. http://dx.doi.org/10.1007/978-1-4612-0799-3_5.
Testo completoAtti di convegni sul tema "Semisimple algebraic groups"
Gupta, Shalini, e Jasbir Kaur. "Structure of some finite semisimple group algebras". In DIDACTIC TRANSFER OF PHYSICS KNOWLEDGE THROUGH DISTANCE EDUCATION: DIDFYZ 2021. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0080606.
Testo completo