Letteratura scientifica selezionata sul tema "Saline water conversion – Reverse osmosis process"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Saline water conversion – Reverse osmosis process".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Articoli di riviste sul tema "Saline water conversion – Reverse osmosis process"

1

Stein, Shaked, Orit Sivan, Yoseph Yechieli e Roni Kasher. "Redox condition of saline groundwater from coastal aquifers influences reverse osmosis desalination process". Water Research 188 (gennaio 2021): 116508. http://dx.doi.org/10.1016/j.watres.2020.116508.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Rosentreter, Hanna, Marc Walther e André Lerch. "Partial Desalination of Saline Groundwater: Comparison of Nanofiltration, Reverse Osmosis and Membrane Capacitive Deionisation". Membranes 11, n. 2 (12 febbraio 2021): 126. http://dx.doi.org/10.3390/membranes11020126.

Testo completo
Abstract (sommario):
Saline groundwater (SGW) is an alternative water resource. However, the concentration of sodium, chloride, sulphate, and nitrate in SGW usually exceeds the recommended guideline values for drinking water and irrigation. In this study, the partial desalination performance of three different concentrated SGWs were examined by pressure-driven membrane desalination technologies: nanofiltration (NF), brackish water reverse osmosis (BWRO), and seawater reverse osmosis (SWRO); in addition to one electrochemical-driven desalination technology: membrane capacitive deionisation (MCDI). The desalination performance was evaluated using the specific energy consumption (SEC) and water recovery, determined by experiments and simulations. The experimental results of this study show that the SEC for the desalination of SGW with a total dissolved solid (TDS) concentration of 1 g/L by MCDI and NF is similar and ranges between 0.2–0.4 kWh/m3 achieving a water recovery value of 35–70%. The lowest SECs for the desalination of SGW with a TDS concentration ≥2 g/L were determined by the use of BWRO and SWRO with 0.4–2.9 kWh/m3 for a water recovery of 40–66%. Even though the MCDI technique cannot compete with pressure-driven membrane desalination technologies at higher raw water salinities, this technology shows a high selectivity for nitrate and a high potential for flexible desalination applications.
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Abdelkader, Sana, Ali Boubakri, Sven Uwe Geissen e Latifa Bousselmi. "Direct contact membrane distillation applied to saline wastewater: parameter optimization". Water Science and Technology 77, n. 12 (18 giugno 2018): 2823–33. http://dx.doi.org/10.2166/wst.2018.274.

Testo completo
Abstract (sommario):
Abstract Freshwater availability is increasingly under pressure from growing demand, resource depletion and environmental pollution. Desalination of saline wastewater is an option for supplying households, industry and agriculture with water, but technologies such as reverse osmosis, evaporation or electrodialysis are energy intensive. By contrast, membrane distillation (MD) is a competitive technology for water desalination. In our study, response surface methodology was applied to optimize the direct contact membrane distillation (DCMD) treatment of synthetic saline wastewater. The aim was to enhance the process performance and the permeate flux Jp (L/m2·h) by optimizing the operating parameters: temperature difference ΔT, feed velocity Vf, salt concentration [NaCl], and glucose concentration [Gluc]. The results are a high permeate quality, with 99.9% electrical conductivity reduction and more than 99.9% chemical oxygen demand (COD) removal rate. The predicted optimum permeate flux Jp was 34.1 L/m2·h at ΔT = 55.2 °C and Vf = 0.086 m/s, the two most significant parameters. The model created showed a high degree of correlation between the experimental and the predicted responses, with high statistical significance.
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Wang, Jingbo, Dian Tanuwidjaja, Subir Bhattacharjee, Arian Edalat, David Jassby e Eric M. V. Hoek. "Produced Water Desalination via Pervaporative Distillation". Water 12, n. 12 (18 dicembre 2020): 3560. http://dx.doi.org/10.3390/w12123560.

Testo completo
Abstract (sommario):
Herein, we report on the performance of a hybrid organic-ceramic hydrophilic pervaporation membrane applied in a vacuum membrane distillation operating mode to desalinate laboratory prepared saline waters and a hypersaline water modeled after a real oil and gas produced water. The rational for performing “pervaporative distillation” is that highly contaminated waters like produced water, reverse osmosis concentrates and industrial have high potential to foul and scale membranes, and for traditional porous membrane distillation membranes they can suffer pore-wetting and complete salt passage. In most of these processes, the hard to treat feed water is commonly softened and filtered prior to a desalination process. This study evaluates pervaporative distillation performance treating: (1) NaCl solutions from 10 to 240 g/L at crossflow Reynolds numbers from 300 to 4800 and feed-temperatures from 60 to 85 °C and (2) a real produced water composition chemically softened to reduce its high-scale forming mineral content. The pervaporative distillation process proved highly-effective at desalting all feed streams, consistently delivering <10 mg/L of dissolved solids in product water under all operating condition tested with reasonably high permeate fluxes (up to 23 LMH) at optimized operating conditions.
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Kadhom, Mohammed, Noor Albayati, Suhaib Salih, Mustafa Al-Furaiji, Mohamed Bayati e Baolin Deng. "Role of Cellulose Micro and Nano Crystals in Thin Film and Support Layer of Nanocomposite Membranes for Brackish Water Desalination". Membranes 9, n. 8 (15 agosto 2019): 101. http://dx.doi.org/10.3390/membranes9080101.

Testo completo
Abstract (sommario):
Reverse osmosis is a major process that produces soft water from saline water, and its output represents the majority of the overall desalination plants production. Developing efficient membranes for this process is the aim of many research groups and companies. In this work, we studied the effect of adding cellulose micro crystals (CMCs) and cellulose nano crystals (CNCs) to the support layer and thin film nanocomposite (TFN) membrane on the desalination performance. SEM, TEM, ATR-FTIR, and contact angle measurements were used to characterize the membrane’s properties; and membrane’s performance were evaluated by water flux and NaCl rejection. Filling 2% of CNCs gel in the support layer improved the water flux by +40%, while salt rejection maintained almost the same, around 95%. However, no remarkable improvement was gained by adding CNCs gel to m-phenylenediamine (MPD) solution, which was used in TFN membrane preparation. Filling CMCs powder in TFN membrane led to a slight improvement in terms of water flux.
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Saeed, Mohamed O., Ghazzai F. Al-Otaibi e M. I. Mohamed Ershath. "Fungal and marine shell fouling in desalination plant equipment". Journal of Water Reuse and Desalination 9, n. 4 (13 agosto 2019): 423–30. http://dx.doi.org/10.2166/wrd.2019.026.

Testo completo
Abstract (sommario):
Abstract The Saudi Arabian Saline Water Conversion Corporation (SWCC) aims to maintain an uninterrupted desalinated water output and has tasked its Desalination Technologies Research Institute (DTRI) with trouble-shooting operational problems and unusual events faced by its desalination plants. Three events were reported and investigated by DTRI. Two were found to involve fungal fouling, and one was found to involve fouling by marine shells. One case of fungal fouling involved a new seawater reverse osmosis membrane and the plant was advised to review the handling and storage practice of membranes. The other case involved product water hoses and manifested itself in the form of black slimy deposits arising from dense fungal growth. The fungus originated from new product hoses and was eliminated by shock-dosing replacement hoses with chlorine. The marine shell fouling involved a feed water line of a combined power/desalination plant. Chlorine, hydrochloric acid, ethylenediaminetetraacetic acid, and fresh water were used to assess their ability to control marine shell fouling in laboratory experiments, with varying results. Since high doses of chlorine were not effective in controlling marine shell fouling, the practice of continuous chlorination should be abandoned in favor of an alternative chlorination regimen, e.g., pulse chlorination.
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Mulopo, J., e V. Radebe. "Recovery of calcium carbonate from waste gypsum and utilization for remediation of acid mine drainage from coal mines". Water Science and Technology 66, n. 6 (1 settembre 2012): 1296–300. http://dx.doi.org/10.2166/wst.2012.322.

Testo completo
Abstract (sommario):
The recovery of calcium carbonate from waste gypsum (a waste product of the reverse osmosis (RO) desalination process) was tested using sodium carbonate. Batch recovery of calcium carbonate from waste gypsum slurries by reacting with sodium carbonate under ambient conditions was used to assess the technical feasibility of CaCO3 recovery and its use for pre-treatment of acid mine drainage (AMD) from coal mines. The effect of key process parameters, such as the slurry concentration (%) and the molar ratio of sodium carbonate to gypsum were considered. It was observed that batch waste gypsum conversion significantly increased with decrease in the slurry concentration or increase in the molar ratio of sodium carbonate to gypsum. The CaCO3 recovered from the bench-scale batch reactor demonstrated effective neutralization ability during AMD pre-treatment compared with commercial laboratory grade CaCO3.
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Caballero, Alejandro, Pablo Caballero, Federico León, Bruno Rodríguez-Morgado, Luis Martín, Juan Parrado, Jenifer Vaswani e Alejandro Ramos-Martín. "Conversion of Whey into Value-Added Products through Fermentation and Membrane Fractionation". Water 13, n. 12 (9 giugno 2021): 1623. http://dx.doi.org/10.3390/w13121623.

Testo completo
Abstract (sommario):
The cheese whey (95% composed of water) is an effluent produced in the cheese industry, of which more than 1.5 million tons are generated in Spain, constituting a serious environmental problem. The process starts with a new fermentative/enzymatic technology that totally converts whey, mainly composed by lactose, proteins, and salts, into a fermented product with higher added value. This new product is mainly composed by lactic acid bacteria biomass, ammonium lactate, and a protein hydrolysate. To separate valuable fractions, this fermented product is processed by a two-stage membrane system, which is a very innovative process in this type of fermented product. The first stage consists of ultrafiltration to separate all suspended solids. As a result of this stage, a product mainly constituted by lactic acid bacteria that have both agronomic applications, mainly as a biocontrol and biofertilizer/bio-stimulant, and applications in animal feeding as a probiotic, is obtained. The second stage consists of reverse osmosis used to concentrate the ultrafiltered permeate obtained earlier, leading to a microbiologically stable product and reducing transport costs. The concentrate is mainly composed of ammonium lactate and a protein hydrolysate, constituted by peptides and free amino acids, which has application both in agriculture as a bio-stimulant and in animal feeding, and the permeate is water, reusable in other industrial processes. This work demonstrates the technical feasibility of this valorization process to achieve the objective of “Waste 0” from a problematic by-product, while obtaining products with commercial utility.
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Leandro, Maria José, Susana Marques, Belina Ribeiro, Helena Santos e César Fonseca. "Integrated Process for Bioenergy Production and Water Recycling in the Dairy Industry: Selection of Kluyveromyces Strains for Direct Conversion of Concentrated Lactose-Rich Streams into Bioethanol". Microorganisms 7, n. 11 (9 novembre 2019): 545. http://dx.doi.org/10.3390/microorganisms7110545.

Testo completo
Abstract (sommario):
Dairy industries have a high environmental impact, with very high energy and water consumption and polluting effluents. To increase the sustainability of these industries it is urgent to implement technologies for wastewater treatment allowing water recycling and energy savings. In this study, dairy wastewater was processed by ultrafiltration and nanofiltration or ultrafiltration and reverse osmosis (UF/RO) and retentates from the second membrane separation processes were assessed for bioenergy production. Lactose-fermenting yeasts were tested in direct conversion of the retentates (lactose-rich streams) into bioethanol. Two Kluyveromyces strains efficiently fermented all the lactose, with ethanol yields higher than 90% (>0.47 g/g yield). Under severe oxygen-limiting conditions, the K. marxianus PYCC 3286 strain reached 70 g/L of ethanol, which is compatible with energy-efficient distillation processes. In turn, the RO permeate is suitable for recycling into the cleaning process. The proposed integrated process, using UF/RO membrane technology, could allow water recycling (RO permeate) and bioenergy production (from RO retentate) for a more sustainable dairy industry.
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Sharma, Nisha, Jaspal Singh e Barjinder Kaur. "Performance Study of Some Reverse Osmosis Systems for Removal of Uranium and Total Dissolved Solids in Underground Waters of Punjab State, India". JOURNAL OF ADVANCES IN PHYSICS 4, n. 2 (22 aprile 2014): 467–76. http://dx.doi.org/10.24297/jap.v4i2.2033.

Testo completo
Abstract (sommario):
Radionuclides (uranium, thorium, radium, radon gas etc.) are found naturally in air, water, soil and rock. Everyday, we ingest and inhale these radionuclides through the air we breathe and through food and water we take. Out of the internal exposure via ingestion of radionuclides, water contributes the major portion. The natural radioactivity of water is due to the activity transfer from bed rock and soils. In our surveys carried out in the past few years, we have observed high concentrations of uranium and total dissolved solids (TDS) in drinking waters of some southern parts of Punjab State exceeding the safe limits recommended by national and international agencies. The main drinking water source is the underground water procured from different depths. Due to the highly saline taste, disorders in their digestive systems and other ailments, people are installing reverse osmosis (RO) systems in their houses. Some RO systems have been installed on commercial basis. The state government is also in the process of installing community RO systems at the village level. As high values of uranium are also undesired and may pose health hazards due to radioactivity and toxicity of uranium, we have conducted a survey in the field to study the performance of various RO systems for removal of uranium and TDS. Water samples from about forty RO systems from Faridkot, Mansa, Bathinda and Amritsar districts of Punjab State were collected and analyzed. Our results show that some RO systems are able to remove more than 99% of uranium in the underground waters used for drinking purposes. TDS values are also reduced considerably to the desired levels. So RO systems can be used to avoid the risk of unduly health problems posed by high concentrations of uranium and TDS in drinking water.
Gli stili APA, Harvard, Vancouver, ISO e altri

Tesi sul tema "Saline water conversion – Reverse osmosis process"

1

Miyashita, Yu. "Removal of N-nitrosamine by Nanofiltration and Reverse Osmosis Membranes". Thesis, Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/14490.

Testo completo
Abstract (sommario):
The rejections of selected N-nitrosamines by commonly used high-pressure nanofiltration (NF) and reverse osmosis (RO) membranes were quantitatively evaluated using a bench-scale cross-flow filtration apparatus. The selected nitrosamines included N-nitrosodimethylamine (NDMA), N-nitrosomethylethylamine (NMEA), N-nitrosopyrrolidine (NPYR), N-nitrosodiethylamine (NDEA), N-nitrosodi-n-propylamine (NDPA), N-nitrosodi-n-butylamine (NDBA) and N-nitrosodiphenylamine (NDPHA). Nitrosamine rejections were evaluated under steady state at elevated feed concentrations, since NDMA rejections were found to be consistent with feed concentrations over three orders of magnitude. The steady-state nitrosamine rejections by NF membranes varied significantly, from 9 to 75%, depending on nitrosamine compounds and tested membranes. For hydrophilic compounds, rejections increased with increasing molecular weight. The nitrosamine rejections by brackish RO membranes reached as high as 97% for higher molecular weight nitrosamines. However, for low molecular weight nitrosamines such as NDMA, rejections as low as 54% were observed. This low level of rejections was attributed to diffusive solute transport being more effective than convective transport. Physicochemical properties such as molecular weight and aqueous diffusivity showed reasonable correlations with nitrosamine permeability constants.
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Otto, Dietmar Norman. "The effect of forward flushing, with permeate, on gypsum scale formation during reverse osmosis treatment of CaSO4-rich water in the absence of anti-scalant". Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/95887.

Testo completo
Abstract (sommario):
Thesis (MEng) -- Stellenbosch University, 2014.
ENGLISH ABSTRACT: When desalinating brackish water by reverse osmosis (RO) or other techniques, high overall water recoveries are essential to minimize brine production and the associated disposal costs thereof. As the overall water recovery increases, concentrations of sparingly soluble salts (e.g. barium sulphate, calcium sulphate) reach levels above saturation, especially near the membrane surface, drastically increasing the scaling propensity. Antiscalants are typically dosed into the feed water to prevent such scaling during RO desalination. However, the carry-over of antiscalant into the concentrate stream can complicate subsequent salt precipitation processes that may be used to increase overall water recovery. These precipitation techniques are sometimes used to reduce the levels of super-saturation in the RO concentrate prior to a subsequent RO desalination step. The purpose of this study was to assess the feasibility of reducing calcium sulphate scaling on RO membranes, by using periodic permeate flushing when feeding a lab-scale RO unit with a supersaturated calcium sulphate solution in the absence of anti-scalant. The overall water recovery was increased by recycling the concentrate, after an intermediate de-supersaturation step. This simulated a multiple-stage RO system, typical of processes used in high-recovery acid mine drainage (AMD) treatment plants. De-supersaturation of the concentrate intermediate was achieved with direct seeded gypsum precipitation, in the absence of any antiscalant. On the membrane surface inside the membrane unit, calcium sulphate concentrations greatly exceeded saturation levels – a combined consequence of the normal concentration process and the well-known surface-based concentration polarisation phenomenon. Therefore, periodic forward-flushing of the supersaturated solution from the membrane unit was performed with permeate. In theory, the periodic flushing removes the highly concentrated layer at the membrane surface during every flush, before scaling can occur. Various flushing regimes were evaluated to assess the effectiveness of the process. A lab-scale desalination unit with a 0.106 m2 flat sheet polyamide RO membrane was designed and constructed. The unit could operate at a feed rate of 12-14 L/h and at permeate fluxes of 12-24 LMH. Super-saturated feed solutions were prepared by mixing sodium sulphate and calcium chloride dihydrate salts with demineralised water, with an initial salinity of ± 5300 mg/L TDS, corresponding to a gypsum saturation index (SIg) of 1.2 for most experiments. The total production time, net permeate production and flux decline were used to compare the flushing efficiency in different experimental runs. Initial tests showed that scaling could be prevented (when operating the unit in full recycle mode, i.e. where both concentrate and permeate were recycled to feed), at flushing frequencies between 12 and 2.4 h-1, when the membrane feed and concentrate were slightly under-saturated (SIg = 0.9) and slightly super-saturated (SIg = 1.1) respectively. However, when switching the same system to non-flushing mode after 24 hours of operation, membrane scaling occurred within 2-3 hours, as indicated by a strong decline in flux. However, when operating the system in concentrate recycle mode (i.e. permeate is withdrawn) with super-saturated feed solutions (e.g. SIg = 1.2), and thus a notably more super-saturated solution in the membrane concentrate, scaling could not be prevented (albeit delayed for some time) with intermittent permeate flushing. A fractional 25-1 factorial design was used to determine which factors had the most significant effect on total production time and permeate production rate, testing five factors: 1) flushing frequency, 2) flushing volume, 3) permeate soak time, 4) permeate flux and 5) instantaneous recovery. The ANOVA analysis showed that total production times were, not surprisingly, primarily affected by the permeate flux, where operation at 24 LMH resulted in a lower net permeate production between 3.0 - 4.2 L, compared to 7.6 - 9.7 L at 12 LMH. Higher permeate fluxes clearly resulted in higher levels of concentration polarisation at the membrane surface, thus increasing the propensity for membrane scaling. Flushing frequency and instantaneous recovery also affected the net permeate production, where 6 h-1 and 10 % were the optimal values respectively within the range of test conditions. The lowest permeate production rate resulted in the highest net permeate volume production (i.e. also longest total production time), confirmed by a least squares regression. In summary: This study showed that periodic permeate flushing could delay the membrane scaling process. However, it failed to prevent membrane scaling completely when operating the system with supersaturated calcium sulphate solutions in the absence of antiscalants. The flushing technique effectively delayed the onset of precipitation, but scaling eventually occurred if the lab-scale RO system was operated in concentrate recycle mode with oversaturated feed solutions (SIg = 1.2). Additional experiments at different cross-flow velocities during permeate flushing, while using an optimised RO test cell flow channel design, are recommended for future studies.
AFRIKAANSE OPSOMMING: Gedurende die ontsouting van brakwater deur tegnieke soos tru-osmose (TO), is ʼn maksimum herwinning van water noodsaaklik om die produksie, en die gepaardgaande kostes van verwydering, van die sout/brak neweproduk te minimeer. Soos die herwinning van water verhoog, so ook verhoog die konsentrasie van moeilik-oplosbare soute (soos bariumsulfaat, kalsiumsulfaat) in die sout konsentraat stroom, totdat die soute uiteindelik superversadiging bereik. Hierdie superversadiging gebeur veral naby die membraanoppervlak, waar dit lei tot ʼn verhoogde kans van presipitasie en skaalvorming. Om dit te voorkom word die voerwater na ʼn TO stelsel tipies gedoseer met antiskaalmiddels. Hierdie antiskaalmiddels verlaat die stelsel saam met die konsentraat, waar hulle gevolglike die presipitasie van soute bemoeilik. Presipitasie van soute uit die konsentraat kan tipies gebruik word om die vlak van superversadiging in die konsentraat te verlaag, waarna verdere TO behandeling gebruik word om selfs ʼn hoër algehele waterherwinning te bewerkstellig. Die doel van hierdie studie was om die vatbaarheid van die vermindering van kalsiumsulfaat (gips) skaalvorming in die afwesigheid van antiskaalmiddels op TO membrane te toets. Dit is bewerkstellig deur ʼn laboratoriumskaal TO eenheid te voer met ʼn superversadigde kalsiumsulfaat oplossing en die membraan periodies met skoon produkwater (permeaat) te was. Die algehele waterherwinning is verhoog deur met ʼn tussenstap die versadigingsvlak van gips in die konsentraat te verlaag, waarna dit hersirkuleer is na die voertenk. Sodoende is ʼn multi-stadium TO stelsel nageboots, soos dit tipies in hoë herwinningsaanlegte, soos met die herwinning van suur mynwater (E: acid mine drainage, AMD), gebruik word. ʼn Verlaging in superversadiging van die konsentraat in die tussenstap is behaal deur die konsentraat direk aan gipskristalle bloot te stel om presipitasie te bewerkstellig in die afwesigheid van enige antiskaalmiddels. Gedurende eksperimente het die soutkonsentrasie op die membraanoppervlak in die TO eenheid superversadigingsvlakke vêr oorskry, as gevolg van die natuurlike konsentrasie proses en die bekende konsentrasie polarisasie oppervlaksverskynsel. Om hierdie superversadiging teen te werk is periodiese saamstroom spoeling van die membraan met skoon produkwater uitgevoer. In teorie het die periodiese spoeling die hoogs gekonsentreerde oplossing van die membraan oppervlak verwyder voor skaalvorming kan plaasvind. Verskillende spoelpatrone is ondersoek om die doeltreffendheid van die spoeling te bepaal. Om die eksperimente uit te voer is ʼn laboratoriumskaal ontsoutingsaanleg met ʼn maklik verwyderbare 0.106 m2 plat-vel poli-amied TO membraan ontwerp en gebou. Die aanleg kan vloeistof voertempo’s tussen 12-24 L/h hanteer en skoon produkwater teen 12-24 LHM lewer. Die superversadigde voer oplossings, soos gebruik in die meerderheid van die eksperimentes is voorberei deur natriumsulfaat en kalsiumchloried-dihidraat soute te meng in gedemineraliseerde water, tot ʼn soutgehalte van ± 5300 mg/L TDS bereik is. Hierdie soutgehalte stem ooreen met ʼn gips versadigingsindeks (E: gypsum saturation index, SIg) van 1.2. Die skoon produkwater totale produksietyd en netto produksie, asook die membraan vloed afname, is gebruik as veranderlikes om die spoel doeltreffendheid tussen eksperimentele lopies te vergelyk. Aanvanklike toetse het getoon dat skalering voorkom is by effens onderversadigde (SIg = 0.9) en effens superversadigde (SIg = 1.1) voer oplossings met die onderskeie spoel frekwensies van 12 en 2.4 h-1, (terwyl die aanleg in algehele hersirkulasie bedryf is, m.a.w. wanneer beide die konsentraat en produkwater gedurig na die voertenk hersirkuleer word). ʼn Effens-superversadigde eksperiment is ook sonder spoeling uitgevoer vir 24 uur. In hierdie geval het skaalvorming binne twee tot drie uur gebeur, soos bevestig deur ʼn skerp afname in die membraan vloed. Skaalvorming kon nie verhoed word terwyl die aanleg bedryf word met superversadigde (SIg = 1.2) voeroplossings en slegs konsentraat hersirkulasie nie (m.a.w. skoon produkwater word opgevang), alhoewel skaalvorming vertraag kon word. Hierdie operasie het tot beduidend meer gekonsentreerde oplossings in die membraan gelei. Om te bepaal watter faktore die grootste invloed op totale produksietyd en netto produksie van skoon produkwater het, is ʼn fraksionele faktoriaalontwerp van 25-1 uitgelê wat vyf faktore toets, naamlik: 1) spoel frekwensie, 2) spoel volume, 3) skoon produkwater weektyd, 4) membraanvloed en 5) oombliklike herwinning. ʼn AVOVA analise het getoon dat totale produksietyd hoofsaaklik deur membraanvloed beïnvloed is, soos verwag kan word. Dit word gestaaf deurdat die aanleg, bedryf teen 24 LMH, slegs 3 - 4.2 L netto produkwater gelewer het, teenoor 7.6 - 9.7 L by 12 LMH. Hoër membraan vloedtempo’s het tot hoër vlakke van konsentrasie polarisasie op die membraanoppervlak gelei, wat ʼn groter neiging tot skaalvorming tot gevolg gehad het. Spoelfrekwensie en oombliklike herwinning het ʼn invloed op die netto produksie van skoon produkwater gehad, met 6 h-1 en 10 % as die onderskeie optimale waardes. ʼn Kleinstekwadraat regressie het aangedui dat die laagste produksietempo van skoon produkwater die hoogste netto produksie van skoon produkwater gelewer het, (asook die langste produksietyd). In opsomming: Hierdie studie het getoon dat gereelde spoeling met skoon produkwater die membraan skaalproses kan vertraag. Gedurende bedryf met superversadigde kalsiumsulfaat oplossings sonder enige antiskaalmiddels is daar gevind dat skaalvorming nie geheel en al vermy kon word nie. Die spoeltegniek, soos gebruik in hierdie studie, het die aanvang van skaalvorming in die laboratorium skaal TO eenheid vertraag, maar bedryf met konsentraat hersirkulasie en superversadigde oplossings (SIg = 1.2) het steeds skaal gevorm. Bykomende eksperimente teen verskeie kruisvloei snelhede gedurende die spoel stap word aanbeveel vir toekomstige studies.
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Shames, Elhashmi Adel. "An investigation into the effect of different types of antiscalant on desalination reverse osmosis (Ro) membrane flux". Thesis, Cape Peninsula University of Technology, 2012. http://hdl.handle.net/20.500.11838/2609.

Testo completo
Abstract (sommario):
Thesis (MTech (Chemical Engineering))--Cape Peninsula University of Technology, 2012.
Recently much research and development has been done into the creation of desalination systems in South Africa, with particular emphasis on the commercialisation of desalination plants that serve local communities. This has been successful - there are currently plants running at Bitlerfontien, Bushmans River Mouth and Robben Island - although membrane fouling and scaling remains a problem associated with membrane desalination, as it does worldwide The aim of this study was to Investigate the performance of different type of antiscalants on artificially scaled membranes which we prepared inside the lab as well as on scaled membranes which were used in pilot plant. We used two type of anti-sealants in our research: Vitec 3000 and Zinc ions. The effects of these anti-sealants on the membrane were determind and the RO performances of the treated and untreated membrane compared. A suitable autopsy procedure was established and was then used to autopsy the XLE 4040 membranes. The autopsied membranes were characterized by scanning electron microscopy (SEM) and optical microscopy (OM). The SEM and OM results clearly showed that scaling had taken place: deposits were observed for both the shell and core samples, which were not present in the images of the untreated membrane, especially when looking at high SEM images magnification. Results also showed that the anti-sealants reduced the fouling and scaling on the membrane surface. As a result, the membrane rejection improved. Rejection and flux results indicated that commercial anti-sealant was more effective in preventing scaling than the Zinc ions. For Vitec anti-sealant case, the flux was in steady state at 36.8 Imh (5% less) after 5 hours compared to around 35 Imh (8% less) for zinc ions case. In addition; SEM images showed that less deposited particles are formed when the membrane was treated with commercial anti-sealant.
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Koen, Louis Johannes. "Ultrasonic-time-domain-reflectometry as a real time non-destructive visualisation technique of concentration polarisation and fouling on reverse osmosis membranes". Thesis, Stellenbosch : Stellenbosch University, 2000. http://hdl.handle.net/10019.1/52042.

Testo completo
Abstract (sommario):
Thesis (MEng)--Stellenbosch University, 2000.
ENGLISH ABSTRACT: Fouling is readily acknowledged as one of the most critical problems limiting the wider application of membranes in liquid separation processes. A better understanding of fouling layer formation and its monitoring is needed in order to improve on existing cleaning techniques. Plant operation can be optimised if fouling can be monitored by noninvasion means either on the plant itself or on an attached monitoring device. The overall scope of this research was to develop a non-destructive, real-time, in situ visualisation technique or device for concentration polarisation and fouling layer monitoring. Ultrasonic-time-domain-reflectometry (UTDR) was employed as a visualisation technique to provide real-time characterisation of the fouling layer. A 24 cm-long rectangular flat sheet aluminium cell was designed and used as separation device for a desalination system. The experimental results obtained using this module confirmed that there are an excellent correspondence between the flux decline behaviour and the UTDR response from the membrane. The ultrasonic technique could effectively detect fouling layer initiation and growth on the membrane in real-time. In addition to the measurement of fouling, the ultrasonic technique was also successfully employed for monitoring membrane cleaning. Since no real-time permeation data is available during cleaning operations in industrial applications, a UTDR monitoring device may prove to be a very valuable technique in optimising cleaning strategies. The technique was further tested on an 8-inch diameter spiral wrap industrial module and good results were obtained. Stagnant zones, as well as flux flow behaviour inside the module could be determined. However, more research IS needed to fully understand the complex phenomena inside a spiral wrap module. Overall, the UTDR technique and its use in monitoring devices have a major impact in the membrane industry due to its extremely powerful capabilities.
AFRIKAANSE OPSOMMING: Membraan-bevuiling of -verstopping is die grootste struikelblok wat die algemene aanwending van membrane vir verskillende watersuiweringsprosesse negatief beinvloed. 'n Beter begrip van membraan-bevuiling, asook beter metingsmetodes daarvan is nodig om op bestaande skoonmaaktegnieke te verbeter. Die hoofdoel van hierdie studie was die ontwikkeling van 'n nie-destruktiewe-in-lyn visuele tegniek vir die meting van konsentrasie polarisasie en membraan-bevuiling. Deur gebruik te maak van ultrasoniese klank golwe, is 'n tegniek ontwikkel wat 'n direkte visuele aanduiding kon gee van die toestand van membraan-bevuiling binnein die module. 'n Reghoekige aluminium-module, 24 cm lank, is ontwerp en gebou waarbinne die membraan geplaas is vir die skeidingsproses. Resultate dui daarop dat daar 'n uitstekende verband bestaan tussen die afname in permeaatvloei en die ultrasoniese eggo vanaf die membraan. Die ultrasoniese tegniek kon die vorming van en toename in membraan-bevuiling doeltreffend karakteriseer. In teenstelling hiermee, is die tegniek ook suksesvol aangewend om die skoonmaak-proses van membrane te ondersoek. Met min of geen data beskikbaar vir die skoonmaak-proses van membrane in die industriële sektor, het die tegniek enorme potensiaal in die optimisering van bestaande skoonmaak-tegnieke. Die tegniek is verder aangewend op 'n industriële 8-duim deursnee spiraal-module en goeie resultate is verkry. Stagnante sones asook vloed-vloei-patrone binne-in die module kon suksesvol bepaal word. Baie navorsing is egter nog nodig om die ingewikkelde data wat gegenereer word tydens die ondersoek van 'n spiraal-module ten volle te verstaan. Die enorme potensiaal en moontlikhede van die ultrasoniese tegniek kan die begin wees van 'n revolusie in die membraan-industrie.
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Martinetti, C. Riziero. "Membrane contractor processes for desalination of brackish water reverse osmosis brines /". abstract and full text PDF (UNR users only), 2008. http://0-gateway.proquest.com.innopac.library.unr.edu/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1455665.

Testo completo
Abstract (sommario):
Thesis (M.S.)--University of Nevada, Reno, 2008.
"May, 2008." Includes bibliographical references (leaves 35-38). Library also has microfilm. Ann Arbor, Mich. : ProQuest Information and Learning Company, [2008]. 1 microfilm reel ; 35 mm. Online version available on the World Wide Web.
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Wang, Yuan School of Chemical Engineering &amp Industrial Chemistry UNSW. "Composite fouling of calcium sulfate and calcium carbonate in a dynamic seawater reverse osmosis unit". Awarded by:University of New South Wales. School of Chemical Engineering and Industrial Chemistry, 2005. http://handle.unsw.edu.au/1959.4/26007.

Testo completo
Abstract (sommario):
Deposition of calcium carbonate (CaCO3) and calcium sulfate (CaSO4) causes serious processing problems and limits the productivity of seawater reverse osmosis (RO) desalination. The interactions between CaSO4 and CaCO3 in the dynamic seawater RO systems have been neglected previously because conventional studies mainly focused on individual compounds or mixed compounds in batch systems. The present work evaluates composite fouling behavior of CaSO4 and CaCO3 in a dynamic RO unit. The fouling experiments were performed at constant pressure and velocity by a partial recycling mode which permeate was withdrawn from the system during the recirculation of retentate to simulate the increasing of water recovery level. The fouling phenomena were monitored by the decline of flux. Scanning electron microscopy (SEM) with a combination of elemental dispersive x-ray microanalysis (EDS), and x-ray powder diffraction (XRD) was used to identify the morphological features, chemical compositions and crystalline phases of foulants. The interactions of CaSO4 and CaCO3 were investigated by the comparison between individual CaSO4 or CaCO3 fouling and composite fouling, and by varying SO42-/HCO3- molar ratio of the feed. A recently developed approach, Scaling Potential Index (SPI) incorporated with measured concentration polarization modulus (CP), for assessing the fouling tendency of inorganic salts on the membrane surface was validated in the dynamic tests. In addition, the effectiveness of two generic scale inhibitors, polyacrylic acid (molecular weight =2100, PA) and sodium hexametaphosphate (SHMP) were evaluated. Some of the highlights of the obtained results are as follows: ??????The precipitation kinetics, morphology and adhesive strength of composite scales were different from pure precipitates ??????CaSO4 precipitated as gypsum while CaCO3 precipitated as two crystalline phases: calcite and aragonite ??????The crystalline phases as well as precipitation kinetics were affected by SO42-/HCO3- ratio ??????Scaling Potential Index was able to predict the fouling tendency of CaSO4 and CaCO3 accurately ??????The dosage of PA and SHMP was effective to mitigate fouling Results of this work are significant, not only because they have made contribution to the fundamental understanding of composite inorganic fouling in RO membrane systems which was ignored previously, but also because they may play a key role in the development of scale control.
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Wild, Peter Martin. "Development, optimization and implementation of the design for a centrifugal reverse-osmosis desalination system". Thesis, 1994. https://dspace.library.uvic.ca//handle/1828/9471.

Testo completo
Abstract (sommario):
A new method of sea water desalination, Centrifugal Reverse-Osmosis (CRO), is developed from concept to patented design and functional prototype of capacity 11,355 litres of fresh water per day. CRO is shown to have significant benefits relative to the leading existing desalination technology, conventional reverse-osmosis. These benefits include: lower energy consumption, reduced initial and replacement membrane costs, lower noise levels and improved reliability. CRO is projected to show increasing cost efficiency as plant capacity increases. For a relatively large CRO plant, 65lm³ fresh water per day, the total cost of desalinated water is projected to be 25.9% lower than the total cost of water produced by a conventional RO plant of equivalent capacity. The current patented design requires further development in order to realize this potential. Toward this end, a computational and experimental study of rotor windage losses and an experimental study of fluid flow losses through the rotor are conducted. In addition a new method for the analysis of stresses in a filament wound rotor shell under combined centrifugal and pressure loading is developed.
Graduate
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Mustafa, Ghulam Mohammad Chemical Sciences &amp Engineering Faculty of Engineering UNSW. "The study of pretreatment options for composite fouling of reverse osmosis membranes used in water treatment and production". 2007. http://handle.unsw.edu.au/1959.4/40882.

Testo completo
Abstract (sommario):
Most common inorganic foulants in RO processes operating on brackish water are calcium carbonate, calcium sulphate and silica. However, silica fouling is the recovery limiting factor in RO system. Silica chemistry is complex and its degree of fouling strongly depends on the silica solubility and its polymerization under different operating conditions of RO process. In several studies carried out in batch and dynamic tests, the presence of polyvalent cations and supersaturation of silica in solutions were found to be the important factors (apart from pH and temperature) that affected the rate of silica polymerization and its induction period. Agitation did increased silica solubility; however, its effect was negligible in presence of polyvalent cations. Alkalization of water solution by coagulants particularly sodium hydroxide was found suitable for silica removal during pretreatment. The presence of magnesium in solution played a key role in silica removal mostly by the mechanism of adsorption to the metal hydroxide. The options of inline mixing (high agitation) for 5 to 10 minutes and microfiltration before RO were found suitable for silica pretreatment. During dynamic tests, the most dominant mechanism for salt deposition (mostly CaSO4) was particulate type in high concentration water solution; while crystallization fouling was the prevailing mechanism of deposition (mostly CaCO3 and silica) in low concentration solution. Silica showed significant effect on size and shape of inorganic salt crystals during coprecipitation. Moreover, the presence of common antiscalants promoted silica fouling. This important finding recommends an extra caution while using antiscalants in case feed water contains silica to a level that can attain saturation near membrane during RO process. A model was developed to predict the silica fouling index (SFI) based on the experimental data for induction period of silica polymerization. The model takes into account the effect of polyvalent cations and concentration polarization near membrane during RO process. It provides a conservative basis for predicting the maximum silica deposition in RO process at the normal operating conditions. A generalised correlation, which was developed for determination of the mass transfer coefficient in RO process, incorporated the effect of temperature change that is usually not considered in previous correlations. A correlation for reduction of silica content in feed water, down to a safe limit of 15 ppm for RO process, was also formulated and validated by the experimental results.
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Atia, Adam Ahmed. "Technical and Economic Modeling for Sustainable Desalination: Renewable-Powered, Adaptive Reverse Osmosis Desalination with Load Flexibility and Pathways to Zero Liquid Discharge". Thesis, 2021. https://doi.org/10.7916/d8-pe3m-2879.

Testo completo
Abstract (sommario):
Freshwater scarcity is a dire problem for exposed human societies and natural ecosystems—a problem expected to grow worse with anticipated climate change. Reverse osmosis (RO) desalination is currently the most energy-efficient and ubiquitous desalination process used for freshwater production in water-scarce regions. The synergy of high solar radiation and significantly reduced costs in photovoltaics (PV) creates the opportunity for PV to become a dominant and sustainable solution for powering the energy-intensive process of desalination and reducing greenhouse gas emissions.While photovoltaic-powered reverse osmosis (PVRO) is a promising technological solution, several significant challenges must be further addressed to sustain high RO performance. First, the inherently intermittent nature of solar energy generation can adversely affect the freshwater conversion process and thereby decrease water recovery and quality. Furthermore, global desalination capacity is dominated by large-scale plants, whereas PVRO systems are currently limited to small-scale systems. Thus, to truly integrate renewable energy with desalination systems in an impactful way, there is a need to explore pathways for modifying the RO process to enable flexible operation on a large-scale, in response to power variability. Furthermore, the techno-economic feasibility of flexible, renewable-powered RO processes and the potential benefits that could be provided to variable renewable energy (VRE) plants and the electric grid warrants investigation. Brine minimization is another major challenge for sustainable desalination. Brine management is especially an issue for inland desalination plants. Novel approaches that are less costly and less energy intensive are needed to facilitate minimal and zero liquid discharge. To enable high-salinity desalination, several variations of osmotically assisted RO, which each surpass the pressure limitation of conventional RO, have been proposed in the literature but require further assessment. The promise of these enhanced RO approaches entails a reduction in energy consumption when compared with thermal desalination methods. The primary deliverables and novel contributions of this thesis include the development of (i) design, simulation, and cost optimization models for variable-powered, variable-salinity RO systems, (ii) module-scale, cost-optimization models for enhanced RO technologies that reduce transmembrane osmotic pressure to enable high-salinity desalination and brine minimization, (iii) examining the effects of cyclic reverse osmosis on inorganic scaling mitigation, and (iv) quantifying the availability of unconventional, alternative water sources to alleviate local water scarcity in the contiguous US. First, the techno-economic feasibility of PV-powered RO desalination plants in the Gulf region was assessed using Hybrid Optimization Model for Electric Renewables (HOMER) and Desalination Economic Evaluation Program (DEEP) to model both the power system and desalination system, respectively. Subsequently, an hourly simulation model for desalination was developed to replace the use of DEEP in the workflow. Grid-connected and off-grid cases with combinations of PV, batteries, and diesel generators were evaluated primarily by the levelized cost of electricity (LCOE) and levelized cost of water (LCOW). The shortcoming of conventional and PV-powered RO is that variable power compromises cumulative water production, which in turn increases water costs. Thus, we proposed the concept of active-salinity-control reverse osmosis (ASCRO) which enables control of the transmembrane osmotic pressure and water production in response to variable power. The ASCRO system dynamically controls energy consumption by operating across a range of feed salinity, allowing it to shift over a wide range of pump feed flows and pressures. To accomplish this, ASCRO utilizes feedwater from both low- and high-salinity sources. Enabling a dynamic power consumption profile can enhance demand-response capabilities, compensating for stressors on the grid. Moreover, ASCRO can improve the integration of renewable energy (RE) by responding to power fluctuations without compromising permeate production. This system can include on-site RE and energy storage to power the ASCRO plant and provide services to the grid. We considered the following grid-connected scenarios: 1) ASCRO, 2) ASCRO and battery storage, 3) ASCRO and photovoltaics (PV), and 4) ASCRO, battery storage, and PV. The LCOW was minimized by providing load-shifting and regulation capacity services in the California Independent System Operator (CAISO) market. We quantified that the ASCRO plant can ramp from minimum to maximum load within 84 seconds, which is adequate for participation in fast-timescale markets. The LCOW for these scenarios ranged from 49 – 59 cents/m³. We also present sensitivity analyses showing the effects of capital cost, CAISO market prices, and PV size on LCOW. To investigate alternative pathways to minimal and zero liquid discharge, low-salt rejection reverse osmosis (LSRRO), cascading osmotically mediated reverse osmosis (COMRO), and osmotically assisted reverse osmosis (OARO) were comparatively assessed via module-scale, cost optimization models to gain an accurate perspective of the performance differences between each of these configurations. We quantified the optimal LCOW of each technology for the case of desalinating feedwater at 70 g/L at 75% recovery, which would result in a brine concentration near 250 g/L, a level that allows further treatment with crystallizers. For baseline scenarios, LCOW results for OARO, COMRO, and LSRRO were 5.14, 7.90, and 6.63 $/m³ of product water, respectively, while the corresponding specific energy consumption (SEC) values were 10.31, 12.77, and 28.90 kWh/m³. A sensitivity analysis is also presented. Additionally, we sought to examine the possibility of whether adaptive RO operation could provide the added benefit of fouling mitigation. Using the Pitzer model, nucleation theory, and dissolution kinetics to guide a set of bench-scale fouling experiments, CaSO₄-NaCl solution, supersaturated with respect to gypsum, was fed through a membrane test cell to determine nucleation induction times, rates of flux decline, and scale reversal. Lastly, a geospatial analysis was conducted to estimate volumes of water deficits and potential alternative water sources for the contiguous US. Namely, wastewater effluent, brackish groundwater, agricultural drainage water, and produced water were considered in this analysis as alternatives for alleviating water scarcity. We formulated a conservative estimate of groundwater availability based on environmental flow limits. Additionally, agricultural drainage volumes were estimated based on USGS water use data. Overall, the results showed that water deficits amounted to an equivalent daily capacity of 149 million m³/day—nearly 50% more than the desalination capacity of the world in 2020. Furthermore, the total availability of alternative water sources was estimated to be between 192 – 240 million m³/day, but most of this volume was not in the same location as deficits. Thus, 58 – 65% of national water deficits would have to be alleviated via long-range transport. Additionally, the potential for integrating desalination and water reuse by interconnecting existing RO plants with wastewater treatments plants was also assessed.
Gli stili APA, Harvard, Vancouver, ISO e altri

Libri sul tema "Saline water conversion – Reverse osmosis process"

1

Karelin, F. N. Obessolivanie vody obratnym osmosom. Moskva: Stroĭizdat, 1988.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Lawler, Desmond F. Enhanced reverse osmosis systems: Intermediate treatment to improve recovery. Denver, Colo: Water Research Foundation, 2011.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Eisenhauer, Roy J. Plugging factor monitor membrane quality acceptance: Flow rate test. Denver, Colo: Applied Sciences Branch, Research and Laboratory Services Division, Denver Office, U.S. Dept. of the Interior, Bureau of Reclamation, 1991.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Ho, G. E. Sola r powered desalination for remote areas: Results of research carried out as MERIWA Project No. E239 at the Institute for Environmental Science at Murdoch University. East Perth, WA: Distributed by MERIWA, 1996.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Hooker, Dick. Major reverse osmosis system: Components for watertreatment : the global market. Norwalk, CT: Business Communications Co., 2001.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Trussell, R. Shane. Reclaimed water desalination technologies: A full-scale performance and cost comparison between electrodialysis reversal and microfiltration/reverse osmosis. Alexandria, VA: WateReuse Research Foundation, 2012.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

AWWA, Seminar on Membrane Processes Principles and Practices (1988 Orlando Fla ). Proceedings. Denver, CO: American Water Works Association, 1988.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Nancy, Nelson, Yang Bayard e United States. Bureau of Reclamation. Denver Office. Applied Sciences Branch., a cura di. Plugging factor monitor membrane quality acceptance: Bubble point test. Denver, Colo: Applied Sciences Branch, Research and Laboratory Services Division, Denver Office, U.S. Dept. of the Interior, Bureau of Reclamation, 1991.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

W, Kaakinen J., e United States. Bureau of Reclamation. Denver Office. Applied Sciences Branch., a cura di. Chilled chlorine storage testing of reverse osmosis membranes: Phase I. Denver, Colo: Applied Sciences Branch, Research and Laboratory Services Division, Denver Office, Bureau of Reclamation, U.S. Dept. of the Interior, 1993.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

W, Kaakinen J., e United States. Bureau of Reclamation. Denver Office. Applied Sciences Branch., a cura di. Chilled chlorine storage testing of reverse osmosis membranes: Phase I. Denver, Colo: Applied Sciences Branch, Research and Laboratory Services Division, Denver Office, Bureau of Reclamation, U.S. Dept. of the Interior, 1993.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Atti di convegni sul tema "Saline water conversion – Reverse osmosis process"

1

Hessami, Mir-Akbar, Nathan Hall e Adam Robb. "An Overview of Reverse Osmosis Water Desalination and the Solution Diffusion Mathematical Model". In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-10559.

Testo completo
Abstract (sommario):
The planet Earth has an abundant supply of saline water but it requires special treatment to ensure the supply of potable water to sustain life on Earth. Water desalination can be used to achieve this objective. In order to understand this process, research was undertaken on water desalination with a focus on reverse osmosis (RO) in order to develop a simple mathematical model of this process. Mathematical modelling can be used to describe, explain and calculate the solvent and solute fluxes through RO membranes. Such techniques are commonly used by membrane manufacturers to develop proprietary software to study their product’s performance. Two such software packages were used to study the effects of the operating conditions on the performance of RO membrane. Good agreement was achieved between the salt rejection results of the mathematical model and the computer software.
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Gulied, Mona Hersi, Ahmed Al Nouss, Tasneem ElMakki, Fathima Sifani Zavahir e Dong Suk han. "Feasibility and Cost Optimization study of Osmotic Assisted Reverse Osmosis Process for Brine Management". In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2020. http://dx.doi.org/10.29117/quarfe.2020.0031.

Testo completo
Abstract (sommario):
Due to the excessive demand to desalinate seawater to satisfy the domestic need in Qatar, it was needed to develop safe and cost effective desalination processes with the consideration of stringent regulation for water quality production and wastewater/brine discharge quality. The direct disposal of brines to the environment raised potential negative impact to the aquatic system and therefore the best practice is to minimize the volume of brine production and reuse it for beneficiary application. Several brine-dewatering techniques include both evaporative and non-evaporative approaches, which are capable to dewater high salinity brines with 50-350 g/L of total dissolved solids (TDS). The commonly adopted technology for dewatering brine is mechanical vapor compression that is known for its significant energy consumption up to 25 kWh/m3 of produced water for 50% of water recovery1. Non-evaporative membrane base technologies are a promising approach to dewater brines with minimum energy usage. Osmotically assisted reverse osmosis (OARO) is an advance membrane based technology for energy efficient and high recovery desalination of saline brine. OARO differ from reverse osmosis (RO) by adding saline sweep on permeate side to reduce osmotic pressure difference across the membrane to generate more water flux. The ongoing research work are based on mathematical/numerical approach that focuses on finding the optimum OARO configuration, inlet hydraulic pressure to avoid membrane burst and cost analysis. However, most of these studies are conducted by considering ideal conditions. In this study, an algorithm for simulating OARO process based on MATLAB and Aspen Plus to model membrane calculation and to design process configuration is considered to the effect of concentration polarization (CP) and reverse solute flux (RSF). The objective is to study the effect of inlet feed concentration and flowrate, sweep concentration and flowrate, inlet hydraulic pressure, number of stages, membrane size and characteristics and module configuration flow. In addition, technical economic analysis to evaluate the economic feasibility of OARO process. The stopping criteria of this model is the quality of water permeating at the feasible operating conditions and the cost. This model demonstrated high potential simulating OARO process to be used as a palate form for the user to predict the behavior of the process by varying operating conditions to desired outcomes.
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Emdadi, Arash, Yunus Emami, Mansour Zenouzi, Amir Lak, Behzad Panahirad, Aydin Lotfi, Farshad Lak e Gregory J. Kowalski. "Potential of Electricity Generation by the Salinity Gradient Energy Conversion Technologies in the System of Urmia Lake-Gadar Chay River". In ASME 2014 8th International Conference on Energy Sustainability collocated with the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/es2014-6310.

Testo completo
Abstract (sommario):
Energy production from salinity gradients is one of the developing renewable energy sources, and has significant potential for satisfying electrical demands. Urmia Lake is the second hyper-saline lake in the world and there is a significant salinity gradient between the lake’s water and the waters of those rivers that flow into the lake. A methodology for determining the feasibility for electrical production using Salinity Gradient Power (SGP) is developed for two different types of systems using this location as an example. Reverse Electrodialysis (RED) and Pressure Retarded Osmosis (PRO), The Gadar Chay River is one of thirteen rivers that run into Urmia Lake; it supports about 10% of the lake’s water. In this study, important parameters such as river discharge and the salinity content of river and lake’s waters for several years were investigated. The theoretical and technical potential of salinity gradient energy was also determined. These calculations indicate that 206.08 MW of electrical power could be produced at this location when the river flow is approximately 29.82 m3/s and they illustrates the potential for salinity gradient energy extraction between Urmia Lake and The Gadar Chay River.
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Emdadi, Arash, Mansour Zenouzi e Gregory J. Kowalski. "Determining the Potential of Salinity Gradient Energy Source Using an Exergy Analysis". In ASME 2016 10th International Conference on Energy Sustainability collocated with the ASME 2016 Power Conference and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/es2016-59532.

Testo completo
Abstract (sommario):
Mixing of fresh (river) water and salty water (seawater or saline brine) in a control fashion would produces an electrical energy known as salinity gradient energy (SGE). Two main conversion technologies of SGE are membrane-based processes; pressure retarded osmosis (PRO) and reverse electrodialysis (RED). In PRO, semipermeable membranes placed between the two streams of solutions allow the transport of water from low-pressure diluted solution to high-pressure concentrated solution. RED requires two alternating semipermeable membranes that allow the diffusion of the ions but not the flow of H2O. Lifetime and power density of the semipermeable membrane are two main factors affecting on deployment of PRO and RED. Semipermeable membranes with lifetime greater than 10 years and power density higher than 5 W/m2 would lead to faster development of this conversion technology. An exergy analysis of an SGE system of sea-river can be applied to calculate the maximum potential power for electricity generation. Seawater is taken as reference environment (global dead state) for calculating the exergy of water since the seawater is the final reservoir. Once the fresh water is mixed with water of the sea or lake it becomes unuseful for human, agricultural or industrial uses loses all its exergy. Aqueous sodium chloride solution model is used in this study to calculate the thermodynamic properties of seawater. This model does not consider seawater as an ideal model and provides accurate thermodynamics properties of sodium chloride solution. As a case study, exergy calculation of Iran’s Urmia Lake-GadarChay River system. The chemical exergy analysis considers sodium chloride (NaCl) as main salt in the water of Lake Urmia. The sodium chloride concentration is more than 200 g/L in recent years. Based on the exergy results the potential power of this system is 329 MW. This results indicates a high potential for constructing power plant for salinity gradient energy conversion.
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!

Vai alla bibliografia