Tesi sul tema "Saccharomyces cerevisiae"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Vedi i top-50 saggi (tesi di laurea o di dottorato) per l'attività di ricerca sul tema "Saccharomyces cerevisiae".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Vedi le tesi di molte aree scientifiche e compila una bibliografia corretta.
Schorling, Stefan. "Ceramidsynthese in Saccharomyces cerevisiae". Diss., lmu, 2001. http://nbn-resolving.de/urn:nbn:de:bvb:19-3658.
Testo completoDeans, Karen. "Ageing of Saccharomyces cerevisiae". Thesis, Heriot-Watt University, 1997. http://hdl.handle.net/10399/663.
Testo completoEricson, Elke. "High-resolution phenomics to decode : yeast stress physiology /". Göteborg : Göteborg University, Dept. of Cell and Molecular Biology, Faculty of Science, 2006. http://www.loc.gov/catdir/toc/fy0707/2006436807.html.
Testo completoEriksson, Peter. "Identification of the two GPD isogenes of saccharomyces cerevisiae and characterization of their response to hyper-osmotic stress". Göteborg : Chalmers Reproservice, 1996. http://catalog.hathitrust.org/api/volumes/oclc/38202006.html.
Testo completoPratt, Elizabeth Stratton. "Genetic and biochemical studies of Adr6, a component of the SWI/SNF chromatin remodeling complex /". Thesis, Connect to this title online; UW restricted, 2001. http://hdl.handle.net/1773/10288.
Testo completoKerkmann, Katja. "Die genomweite Expressionsanalyse von Deletionsmutanten der Gene NHP6A/B und CDC73 in der Hefe S.cerevisiae". [S.l. : s.n.], 2000. http://deposit.ddb.de/cgi-bin/dokserv?idn=961961651.
Testo completoBellahn, Inga. "Biochemische Charakterisierung vakuolärer Vesikel aus Saccharomyces cerevisiae". [S.l. : s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=965643484.
Testo completoJestel, Anja. "Strukturelle Charakterisierung des Calpastatin und Untersuchung eines ATP-abhängigen Peptidtransports in S. cerevisiae". [S.l. : s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=966507193.
Testo completoSchauen, Matthias. "Mitochondriale Transportproteine in Saccharomyces cerevisiae". [S.l.] : [s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=965029379.
Testo completoSchulze, Ulrik. "Anaerobic physiology of Saccharomyces cerevisiae /". Online version, 1995. http://bibpurl.oclc.org/web/20903.
Testo completoGreig, Duncan. "Sex, species and Saccharomyces cerevisiae". Thesis, University of Oxford, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.301401.
Testo completoPayne, Thomas. "Protein secretion in Saccharomyces cerevisiae". Thesis, University of Nottingham, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.438772.
Testo completoPaulo, Jorge Fernando Ferreira de Sousa. "mRNA mistranslation in Saccharomyces cerevisiae". Master's thesis, Universidade de Aveiro, 2012. http://hdl.handle.net/10773/7775.
Testo completoThe genetic code is defined as a series of biochemical reactions that establish the cellular rules that translate DNA into protein information. It was established more than 3.5 billion years ago and it is one of the most conserved features of life. Over the years, several alterations to the standard genetic code and codon ambiguities have been discovered in both prokaryotes and eukaryotes, suggesting that the genetic code is flexible. However, the molecular mechanisms of evolution of the standard genetic code and the cellular role(s) of codon ambiguity are not understood. In this thesis we have engineered codon ambiguity in the eukaryotic model Sacharomyces cerevisiae to clarify its cellular consequences. As expected, such ambiguity had a strong negative impact on growth rate, viability and protein aggregation, indicating that it affects fitness negatively. However, it also created important selective advantages in certain environmental conditions, suggesting that it has the capacity to increase adaptation potential under environmental variable conditions. The overall negative impact of genetic code ambiguity on protein aggregation and cell viability, suggest that codon ambiguity may have catastrophic consequences in multicellular organisms. In particular in tissues with low cell turnover rate, namely in the brain. This hypothesis is supported by the recent discovery of a mutation in the mouse alanyl-tRNA synthetase which creates ambiguity at alanine codons and results in rapid loss of Purking neurons, neurodegeneration and premature death. Therefore, genetic code ambiguity can have both, negative or positive outcomes, depending on cell type and environmental conditions.
O código genético pode ser definido como uma série de reacções bioquímicas que estabelecem as regras pelas quais as sequências nucleotídicas do material genético são traduzidas em proteínas. Apresenta um elevado grau de conservação e estima-se que tenha tido a sua origem há mais de 3.5 mil milhões de anos. Ao longo dos últimos anos foram identificadas várias alterações ao código genético em procariotas e eucariotas e foram identificados codões ambíguos, sugerindo que o código genético é flexível. Contudo, os mecanismos de evolução das alterações ao código genético são mal conhecidos e a função da ambiguidade de codões é totalmente desconhecida. Nesta tese criámos codões ambíguos no organismo modelo Saccharomyces cerevisiae e estudámos os fenótipos resultantes de tal ambiguidade. Os resultados mostram que, tal como seria expectável, a ambiguidade do código genético afecta negativamente o crescimento, viabilidade celular e induz a produção de agregados proteicos em S. cerevisiae. Contudo, tal ambiguidade também resultou em variabilidade fenótipica, sendo alguns dos fenótipos vantajosos em determinados condições ambientais. Ou seja, os nossos dados mostram que a ambiguidade do código genético afecta negativamente a capacidade competitiva de S. cerevisiae em meio rico em nutrientes, mas aumenta a sua capacidade adaptativa em condições ambientais variáveis. Os efeitos negativos da ambiguidade do código genético, nomeadamente a agregação de proteínas, sugerem que tal ambiguidade poderá ser catastrófica em organismos multicelulares em que a taxa de renovação celular é baixa. Esta hipótese é suportada pela recente descoberta de uma mutação na alaniltRNA sintetase do ratinho que induz ambiguidade em codões de alanina e resulta numa forte perda de neurónios de Purkinge, neurodegeneração e morte prematura. Ou seja, a ambiguidade do código genético pode ter consequências negativas ou positivas dependendo do tipo de células e das condições ambientais.
Kim, Jae-hyun. "Chromosome segregation in Saccharomyces cerevisiae /". Digital version accessible at:, 1998. http://wwwlib.umi.com/cr/utexas/main.
Testo completoCaponigro, Giordano Michael. "mRNA decay in Saccharomyces cerevisiae". Diss., The University of Arizona, 1996. http://hdl.handle.net/10150/187472.
Testo completoDunckley, Travis Lee. "mRNA decapping in Saccharomyces cerevisiae". Diss., The University of Arizona, 2000. http://hdl.handle.net/10150/289165.
Testo completoAnderlund, Mikael. "Redox balancing in recombinant strains of Saccharomyces cerevisiae". Lund : University of Lund, 1998. http://books.google.com/books?id=uc5qAAAAMAAJ.
Testo completoAnsell, Ricky. "Redox and osmoregulation in Saccharomyces cerevisiae the role of the two isogenes encoding NAD-dependent glycerol 3-phosphate dehydrogenase /". Göteborg : [Institute of Cell and Molecular Biology, Dept. of General and Marine Microbiology, Lundberg Laboratory, Göteborg University], 1997. http://catalog.hathitrust.org/api/volumes/oclc/38985539.html.
Testo completoKemp, Hilary A. "A complex of six FAR proteins required for pheromone arrest and mating /". view abstract or download file of text, 2003. http://wwwlib.umi.com/cr/uoregon/fullcit?p3113011.
Testo completoTypescript. Includes vita and abstract. Includes bibliographical references (leaves 94-104). Also available for download via the World Wide Web; free to University of Oregon users.
Strässle, Christoph A. "Modell zur Spontansynchronisation von Saccharomyces cerevisiae /". [S.l.] : [s.n.], 1988. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=8598.
Testo completoDeckers, Markus. "Charakterisierung peroxisomaler Proteine aus Saccharomyces cerevisiae". [S.l.] : [s.n.], 2007. http://deposit.ddb.de/cgi-bin/dokserv?idn=985178043.
Testo completoStüer, Heike. "Wahrnehmung von Biotinmangel durch Saccharomyces cerevisiae". kostenfrei, 2009. http://www.opus-bayern.de/uni-regensburg/volltexte/2009/1353/.
Testo completoGroßmann, Guido. "Plasma membrane compartmentation in Saccharomyces cerevisiae". kostenfrei, 2008. http://www.opus-bayern.de/uni-regensburg/volltexte/2009/1152/.
Testo completoLondon, Markus Konrad Justin. "Regulation der Proteasombiogenese in Saccharomyces cerevisiae". [S.l. : s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=974673315.
Testo completoBeck, Karsten. "Das Dhh1 Protein aus Saccharomyces cerevisiae". Diss., lmu, 2002. http://nbn-resolving.de/urn:nbn:de:bvb:19-7362.
Testo completoWidlund, Per Olov Ingvar. "The Saccharomyces cerevisiae chromosomal passenger, Bir1 /". Thesis, Connect to this title online; UW restricted, 2006. http://hdl.handle.net/1773/9202.
Testo completoThompson, C. L. "Interaction of pentamidine with Saccharomyces cerevisiae". Thesis, University of Hull, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.377415.
Testo completoReithinger, Johannes. "Membrane Protein Biogenesis in Saccharomyces cerevisiae". Doctoral thesis, Stockholms universitet, Institutionen för biokemi och biofysik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-95376.
Testo completoAt the time of the doctoral defence the following papers were unpublished and had a status as follows: Paper 4: Manuscript; Paper 5: Manuscript
Spalding, A. C. "Host-plasmid interactions in Saccharomyces cerevisiae". Thesis, University of Kent, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.383082.
Testo completoJenkins, F. "Development of thermotolerance in Saccharomyces cerevisiae". Thesis, Bucks New University, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.234851.
Testo completoPearce, Amanda K. "Regulation of glycolysis in Saccharomyces cerevisiae". Thesis, University of Aberdeen, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.301297.
Testo completoHatton, Lee S. "Gluconeogenic gene regulation in Saccharomyces cerevisiae". Thesis, University of Aberdeen, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.387524.
Testo completoRowley, Neil K. "Studies on the Saccharomyces cerevisiae genome". Thesis, University of Cambridge, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.361615.
Testo completoZealey, Gavin Ross. "Plasmid copy number in Saccharomyces cerevisiae". Thesis, University of Bath, 1985. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.333232.
Testo completoGimeno, Carlos Joaquín. "Characterization of Saccharomyces cerevisiae pseudohyphal development". Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/33506.
Testo completoDuBern, Charlotte Louise. "Molecular characterisation of Saccharomyces cerevisiae Tra1p". Thesis, University of Cambridge, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.620916.
Testo completoBhattacharyya, Souryadeep. "Synthetic sensing systems in Saccharomyces cerevisiae". Thesis, Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/54016.
Testo completoGhimire, Jenisha. "Localization of Ime4 in Saccharomyces cerevisiae". ScholarWorks@UNO, 2012. http://scholarworks.uno.edu/honors_theses/12.
Testo completoChang, Cheng-Fu. "Compaction of chromatin in Saccharomyces cerevisiae". Master's thesis, University of Cape Town, 2006. http://hdl.handle.net/11427/4247.
Testo completoIncludes bibliographical references.
This study investigated the link between the association of the yeast linker histone homologue, Hholp, and the compaction of the yeast genome during stationary phase. The relative gene content of condensed chromatin, fractionated and isolated by sucrose gradient ultracentrifugation from stationary and exponential phase cultures was compared using genome-wide technologies. This study showed that condensed chromatin of stationary phase culture contained an enriched density of genes on all the chromosomes, indicating global compaction of the yeast genome during stationary phase.
Kadowaki, Tatsuhiko. "Nucleocytoplasmic transport ofmRNA in Saccharomyces cerevisiae". Case Western Reserve University School of Graduate Studies / OhioLINK, 1994. http://rave.ohiolink.edu/etdc/view?acc_num=case1057254977.
Testo completoRouhier, Matthew Ford. "Characterization of YDR036C From Saccharomyces cerevisiae". Miami University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=miami1319464136.
Testo completoNguyen, Tania. "Complex transcription units in Saccharomyces cerevisiae". Thesis, University of Oxford, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.711667.
Testo completoBjarre, Jonas. "Luftning i fedbatchodlingar av Saccharomyces cerevisiae". Thesis, KTH, Skolan för bioteknologi (BIO), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-190743.
Testo completoDangelmayr, Claudia Vera. "Untersuchung der Mikroautophagocytose in Saccharomyces cerevisiae". [S.l. : s.n.], 2004. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB11104004.
Testo completoWu, Randy. "Chromatin regulatory signatures in Saccharomyces cerevisiae". Diss., Search in ProQuest Dissertations & Theses. UC Only, 2008. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3339209.
Testo completoShock, Teresa R. "Understanding signaling specificity in Saccharomyces cerevisiae". Diss., Search in ProQuest Dissertations & Theses. UC Only, 2009. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3352468.
Testo completoHenstock, Mark Richard. "Stationary phase genes of Saccharomyces cerevisiae". Thesis, University of Bath, 2004. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.425876.
Testo completoStenner, Nigel Francis. "The WHI1 gene of Saccharomyces cerevisiae". Thesis, University of Bath, 1990. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.237874.
Testo completoMarinkovic, Zoran. "Self-organization of Saccharomyces cerevisiae colonies". Thesis, Sorbonne Paris Cité, 2017. http://www.theses.fr/2017USPCC260/document.
Testo completoThe natural environment of yeast is often a community of cells but researchers prefer to study them in simpler homogeneous environments like single cell or bulk liquid cultures, losing insight into complex spatiotemporal growth, differentiation and self-organization and how those features are intertwined and shaped through evolution and ecology. I developed a multi-layered microfluidic device that allows us to grow yeast colonies in spatially controlled dynamically structured changing environments from a monolayer of single yeast cells to a multi-layered colony. Colony growth, as a whole and at specific locations, is a result of the nutrient gradient formation within a colony through interplay of nutrient diffusion rates, nutrient uptake rates by the cells and starting nutrient concentrations. Once a limiting nutrient (e.g. glucose or amino acids) is depleted at a specific distance from the nutrients source the cells within a colony stop to grow. I was able to modulate this specific distance by changing the starting nutrient concentrations and uptake rates of cells. Colony gene expression patterns gave us information on specific micro environments formation and consequential development, differentiation and self-organization. I quantified the patterns of expression of seven glucose transporter genes (HXT1-7), each of them specifically expressed depending on the glucose concentration. This enabled us to reconstruct glucose gradients formation in a colony. I further followed the expression of fermentation and respiration specific genes and observed differentiation between two subpopulations. We also mapped other genes specific for different parts of carbohydrate metabolism, followed and quantified the spatiotemporal dynamics of growth and gene expression, and finally modelled the colony growth and nutrient gradient formation. For the first time, we were able to observe growth, differentiation and self-organization of S. cerevisiae colony with such an unprecedented spatiotemporal resolution
Polyak, Steven William. "Biotin protein ligase from Saccharomyces cerevisiae /". Title page, table of contents and summary only, 2000. http://web4.library.adelaide.edu.au/theses/09PH/09php781.pdf.
Testo completo