Letteratura scientifica selezionata sul tema "Ruthenium compounds"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Ruthenium compounds".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Articoli di riviste sul tema "Ruthenium compounds"

1

Kanaoujiya, Rahul, e Shekhar Srivastava. "Ruthenium based antifungal compounds and their activity". Research Journal of Chemistry and Environment 25, n. 7 (25 giugno 2021): 177–82. http://dx.doi.org/10.25303/257rjce17721.

Testo completo
Abstract (sommario):
Ruthenium is recognized as a highly attractive alternative to platinum since the toxicity of many ruthenium compounds is lower and some complexes are quite selective for antifungal drugs. Ruthenium has various chemical properties these chemical properties are very useful for antifungal drug design. Ruthenium compounds have several types of advantages as antifungal drugs because of lower toxicity. . Ruthenium has unique properties making it of particularly use as fungal in drug design specially in antifungal drugs. Several types of ruthenium complexes and their antifungal activity standards are described here.
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Kanaoujiya, Rahul, e Shekhar Srivastava. "Coordination Chemistry of Ruthenium". Research Journal of Chemistry and Environment 25, n. 9 (25 agosto 2021): 103–6. http://dx.doi.org/10.25303/259rjce103106.

Testo completo
Abstract (sommario):
Ruthenium is one of the rare elements that belongs to the platinum group metals. Ruthenium is very effective hardener for platinum and palladium. Well studied coordination and organometallic chemistry of ruthenium results in a various varieties of compounds. There are various features of ruthenium such as oxidation states, coordination numbers and geometries. Ruthenium compounds have various applications and also have low toxicity and they are ideal for the catalytic synthesis of drugs. The field of ruthenium chemistry is very broad and is extremely diverse in the field of catalysis and medicinal chemistry. This review article shows a classical general chemistry of ruthenium compounds.
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Motswainyana, William M., e Peter A. Ajibade. "Anticancer Activities of Mononuclear Ruthenium(II) Coordination Complexes". Advances in Chemistry 2015 (19 febbraio 2015): 1–21. http://dx.doi.org/10.1155/2015/859730.

Testo completo
Abstract (sommario):
Ruthenium compounds are highly regarded as potential drug candidates. The compounds offer the potential of reduced toxicity and can be tolerated in vivo. The various oxidation states, different mechanism of action, and the ligand substitution kinetics of ruthenium compounds give them advantages over platinum-based complexes, thereby making them suitable for use in biological applications. Several studies have focused attention on the interaction between active ruthenium complexes and their possible biological targets. In this paper, we review several ruthenium compounds which reportedly possess promising cytotoxic profiles: from the discovery of highly active compounds imidazolium [trans-tetrachloro(dmso)(imidazole)ruthenate(III)] (NAMI-A), indazolium [trans-tetrachlorobis(1H-indazole)ruthenate(III)](KP1019), and sodium trans-[tetrachloridobis(1H-indazole)ruthenate(III)] (NKP-1339) to the recent work based on both inorganic and organometallic ruthenium(II) compounds. Half-sandwich organometallic ruthenium complexes offer the opportunity of derivatization at the arene moiety, while the three remaining coordination sites on the metal centre can be functionalised with various coordination groups of various monoligands. It is clear from the review that these mononuclear ruthenium(II) compounds represent a strongly emerging field of research that will soon culminate into several ruthenium based antitumor agents.
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Barna, Fabienne, Karim Debache, Carsten A. Vock, Tatiana Küster e Andrew Hemphill. "In VitroEffects of Novel Ruthenium Complexes in Neospora caninum and Toxoplasma gondii Tachyzoites". Antimicrobial Agents and Chemotherapy 57, n. 11 (26 agosto 2013): 5747–54. http://dx.doi.org/10.1128/aac.02446-12.

Testo completo
Abstract (sommario):
ABSTRACTUpon the screening of 16 antiproliferative compounds againstToxoplasma gondiiandNeospora caninum, two hydrolytically stable ruthenium complexes (compounds 16 and 18) exhibited 50% inhibitory concentrations of 18.7 and 41.1 nM (T. gondii) and 6.7 and 11.3 nM (N. caninum). To achieve parasiticidal activity with compound 16, long-term treatment (22 to 27 days at 80 to 160 nM) was required. Transmission electron microscopy demonstrated the rapid impact on and ultrastructural alterations in both parasites. These preliminary findings suggest that the potential of ruthenium-based compounds should thus be further exploited.
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Okawara, Toru, Masaaki Abe, Shiho Ashigara e Yoshio Hisaeda. "Molecular structures, redox properties, and photosubstitution of ruthenium(II) carbonyl complexes of porphycene". Journal of Porphyrins and Phthalocyanines 19, n. 01-03 (gennaio 2015): 233–41. http://dx.doi.org/10.1142/s1088424614501120.

Testo completo
Abstract (sommario):
Two ruthenium(II) carbonyl complexes of porphycene, (carbonyl)(pyridine)(2,7,12,17-tetra-n-propylporphycenato)ruthenium(II) (1) and (carbonyl)(pyridine)(2,3,6,7,12,13,16,17-octaethylpor-phycenato)ruthenium(II) (2), have been structurally characterized by single-crystal X-ray diffraction analysis. Cyclic voltammetry has revealed that the porphycene complexes undergo multiple oxidations and reductions in dichloromethane and the reduction potentials are highly positive compared to porphyrin analogs. UV-light irradiation (400 nm or shorter wavelength region) of a benzene solution of 1 and 2 containing external pyridine leads to dissociation of the carbonyl ligand from the ruthenium(II) centers to give the corresponding bis-pyridine complexes. The identical reaction has been also studied for a porphyrin derivative (carbonyl)(pyridine)(2,3,7,8,12,13,17,18-octaethylporphyriato)ruthenum(II) (3). The first-order kinetic analysis has revealed that the photosubstitution of all of the compounds occurs in the order of 10-3 s-1 at 298 K but proceeds faster for complexes of porphycene (1 and 2) than that of porphyrin (3).
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Houbrechts, Stephan, Carlo Boutton, Koen Clays, André Persoons, Ian R. Whittall, Raina H. Naulty, Marie P. Cifuentes e Mark G. Humphrey. "Novel Organometallic Compounds for Nonlinear Optics". Journal of Nonlinear Optical Physics & Materials 07, n. 01 (marzo 1998): 113–20. http://dx.doi.org/10.1142/s0218863598000090.

Testo completo
Abstract (sommario):
Hyper-Rayleigh scattering is used to investigate the nonlinear optical properties of novel metal (ruthenium, nickel and gold) σ-arylacetylide complexes. The influence of the organometallic donor group and conjugating bridge on the quadratic hyperpolarizability is studied. For all organic ligands, the addition of the metal (donor) group is shown to increase the static hyperpolarizability by a factor of 2, 4 and 7 for gold, nickel and ruthenium complexes, respectively. Moreover, replacement of phenyl with a heterocyclic ring is demonstrated to enlarge the hyperpolarizability in the case of gold and ruthenium compounds.
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Studer, Valentin, Nicoleta Anghel, Oksana Desiatkina, Timo Felder, Ghalia Boubaker, Yosra Amdouni, Jessica Ramseier et al. "Conjugates Containing Two and Three Trithiolato-Bridged Dinuclear Ruthenium(II)-Arene Units as In Vitro Antiparasitic and Anticancer Agents". Pharmaceuticals 13, n. 12 (16 dicembre 2020): 471. http://dx.doi.org/10.3390/ph13120471.

Testo completo
Abstract (sommario):
The synthesis, characterization, and in vitro antiparasitic and anticancer activity evaluation of new conjugates containing two and three dinuclear trithiolato-bridged ruthenium(II)-arene units are presented. Antiparasitic activity was evaluated using transgenic Toxoplasmagondii tachyzoites constitutively expressing β-galactosidase grown in human foreskin fibroblasts (HFF). The compounds inhibited T.gondii proliferation with IC50 values ranging from 90 to 539 nM, and seven derivatives displayed IC50 values lower than the reference compound pyrimethamine, which is currently used for treatment of toxoplasmosis. Overall, compound flexibility and size impacted on the anti-Toxoplasma activity. The anticancer activity of 14 compounds was assessed against cancer cell lines A2780, A2780cisR (human ovarian cisplatin sensitive and resistant), A24, (D-)A24cisPt8.0 (human lung adenocarcinoma cells wild type and cisPt resistant subline). The compounds displayed IC50 values ranging from 23 to 650 nM. In A2780cisR, A24 and (D-)A24cisPt8.0 cells, all compounds were considerably more cytotoxic than cisplatin, with IC50 values lower by two orders of magnitude. Irrespective of the nature of the connectors (alkyl/aryl) or the numbers of the di-ruthenium units (two/three), ester conjugates 6–10 and 20 exhibited similar antiproliferative profiles, and were more cytotoxic than amide analogues 11–14, 23, and 24. Polynuclear conjugates with multiple trithiolato-bridged di-ruthenium(II)-arene moieties deserve further investigation.
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Domínguez-Jurado, Elena, Francisco J. Cimas, José Antonio Castro-Osma, Alberto Juan, Agustín Lara-Sánchez, Antonio Rodríguez-Diéguez, Alexandr Shafir, Alberto Ocaña e Carlos Alonso-Moreno. "Tuning the Cytotoxicity of Bis-Phosphino-Amines Ruthenium(II) Para-Cymene Complexes for Clinical Development in Breast Cancer". Pharmaceutics 13, n. 10 (26 settembre 2021): 1559. http://dx.doi.org/10.3390/pharmaceutics13101559.

Testo completo
Abstract (sommario):
Despite some limitations such as long-term side effects or the potential presence of intrinsic or acquired resistance, platinum compounds are key therapeutic components for the treatment of several solid tumors. To overcome these limitations, maintaining the same efficacy, organometallic ruthenium(II) compounds have been proposed as a viable alternative to platinum agents as they have a more favorable toxicity profile and represent an ideal template for both, high-throughput and rational drug design. To support the preclinical development of bis-phoshino-amine ruthenium compounds in the treatment of breast cancer, we carried out chemical modifications in the structure of these derivatives with the aim of designing less toxic and more efficient therapeutic agents. We report new bis-phoshino-amine ligands and the synthesis of their ruthenium counterparts. The novel ligands and compounds were fully characterized, water stability analyzed, and their in vitro cytotoxicity against a panel of tumor cell lines representative of different breast cancer subtypes was evaluated. The mechanism of action of the lead compound of the series was explored. In vivo toxicity was also assessed. The results obtained in this article might pave the way for the clinical development of these compounds in breast cancer therapy.
Gli stili APA, Harvard, Vancouver, ISO e altri
9

MURAHASHI, Shun-Ichi, e Takeshi NAOTA. "Organic synthesis using ruthenium compounds." Journal of Synthetic Organic Chemistry, Japan 46, n. 10 (1988): 930–42. http://dx.doi.org/10.5059/yukigoseikyokaishi.46.930.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Zelen, Ivanka, Milan Zarić, Petar P. Čanović, Danica Igrutinović e Ana Rilak Simović. "Antitumor activity of ruthenium(II) complexes on HCT 116 cell line in vitro". Education and Research in Health Sciences 1, n. 1 (26 dicembre 2022): 6–12. http://dx.doi.org/10.5937/erhs2201006z.

Testo completo
Abstract (sommario):
In the field of non-platinum complexes, ruthenium complexes have shown very strong antitumor activity on various types of cisplatin-resistant tumors. In addition, Ru(II) and Ru(III) complexes have shown a high degree of selectivity towards cancer cells as well as antimetastatic effects. Importantly, ruthenium compounds can bind to the DNA molecule of a tumor cell and thus reduce the viability of cancer cells. Moreover, ruthenium complexes can bind to human serum albumin and transferrin, which makes their transfer to tumor cells more efficient than platinum compounds. Consequently, the research aim was to investigate the antitumor effect of two synthesized Ru(II) complexes [Ru(Cl-Ph-tpy)(phen)Cl]Cl (K1) and [Ru(Cl-Ph-tpy)(o-bqdi)Cl]Cl (K2) on the HCT 116 cell line, and to define the mechanism of cell death that these compounds induce in HCT 116 cancer cells. Results of our research clearly showed that the two investigated ruthenium complexes K1 and K2 showed very strong antitumor activity against the HCT 116 tumor cell line. Additionally, ruthenium complex K1 showed higher antitumor activity than ruthenium K2 complex and cisplatin after 72 hours of treatment. Our findings demonstrated that both K1 and K2 ruthenium compounds exhibited strong antitumor activity against HCT 116 cell line by induction of early apoptosis.
Gli stili APA, Harvard, Vancouver, ISO e altri

Tesi sul tema "Ruthenium compounds"

1

Almodares, Zahra. "Ruthenium compounds as anti-tumour agents". Thesis, University of Leeds, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.531426.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Orenha, Renato Pereira. "Computational study of ruthenium-nitrosyl compounds". Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/59/59138/tde-08062017-141410/.

Testo completo
Abstract (sommario):
The discovery of the chemical properties related to the physiological and pathophysiological processes of the nitric oxide molecule has advanced scientific research concerning the control of NO availability in the biological environment. Complexes involving ruthenium and other ligands, such as amine and tetraazomacrocycles, have been used as models because they display properties like stability to air oxidation, solubility in water, and low cytotoxicity against host cells. Given the peculiar properties of nitric oxide, we first conducted a computational experiment based on the molecular orbital diagram of NO (Chapter 3). Then, we performed exercises of computational quantum chemistry involving the monocation (NO+) and monoanion (NO-) of NO. These exercises were presented to students at the end of their undergraduate studies or at the beginning of their postgraduate studies. The students started the experiment by exploring the Lewis structures of NO+, NO, and NO- along with the molecular orbital diagram of NO, to obtain a correlation with different properties like bond lengths and atomic charges. Next, they compared the calculated bond lengths and vibrational frequencies with experimental results found in Internet databases, which allowed them to discuss the differences they visualized. In addition, distinct approximations helped to calculate partial atomic charges. The students verified that it is difficult to determine this parameter because it is not physically observable and does not rely on any quantum mechanical operator to determine its quantity. The dipole moment calculated for NO, 0.153 D, by using B3LYP/631+G(d,p) level is close to the most accepted experimental data. This value contrasts with a recent determination of this parameter indicating that the negative charge concentrates on the nitrogen atom. The students finished the experiment by dealing with two topics of relevant interest to computational chemistry: (i) investigation of the behavior of some properties; for instance, atomic charges and spin densities, in relation to the basis set increment, and (ii) calculation of accurate electronic energies from extrapolation of the basis set pcn, n = 2-4, to infinity. Given the relevance of the nitric oxide molecule and the important role of water as solvent in the biological environment, we undertook a computational study of the interaction of NO, NO+, and NO- with H2O: [NO.H2O], 0, [NO.H2O]+, 0+, and [NO.H2O]-, 0- (Chapter 4). The geometries optimized for these clusters indicated that the NO.H2O interaction depends on the total charge: (ON.HOH), (NO-.HOH), and (ON+.OH2). The atomic spin densities along with the frontier molecular orbitals representation demonstrated that NO goes from 0 to 0+ or 0- in the oxidation or reduction processes, respectively, and that both processes occur on the nitrogen atom. The quantum theory of atoms in molecules (QTAIM), electron localization function (ELF), and natural bond-bond polarizability (NBBP) methods helped to quantify the electronic delocalization level between NO and H2O: 0+ > 0 > 0-, to show a predominantly ionic character for the intermolecular interactions, but a primarily covalent character for the intramolecular chemical bonds. Energy analyses carried out by the natural bond orbital (NBO) and localized molecular orbital energy decomposition (LMOEDA) methods for the interaction between NO and H2O in the complexes 0, 0+, and 0- demonstrated a more favorable interaction in 0- than in 0+ and 0, as revealed by the former method. However, the latter method indicated more negative total interaction energy for 0+ in relation to 0- and 0 because of its predominantly electrostatic component. Analysis of the electrostatic potential surfaces furnished a clear and direct explanation for the relative position of the monomers. Additionally, this analysis showed that the Coulombic attraction between the water molecule and the charged complexes NO+ and NO- is larger than in the case of the complexes with NO. Accordingly, we investigated the complexes cis-[RuCl(NO)(NH3)4]+, 1; cis-[RuCl(NO)(NH3)4]2+, 2; cis-[RuCl(NO)(NH3)4]3+, 3; trans-[RuCl(NO)(NH3)4]+, 4; trans-[RuCl(NO)(NH3)4]2+, 5; trans-[RuCl(NO)(NH3)4]3+, 6; [Ru(NO)(NH3)5]+, 7; [Ru(NO)(NH3)5]2+, 8; and [Ru(NO)(NH3)5]3+, 9 to improve our understanding of the nature of Ru-NO chemical bond and of the influence of the total charge, nature, and relative position of simple ligands on NO release from these complexes (Chapter 5). According to the analysis of charges conducted by the QTAIM and NBO methods along with the molecular orbital representation, the first chemical reduction of complexes 3 and 6 to complexes 2 and 5, respectively, occurs in the pi orbital of Cl, whereas the second reduction, from complexes 2 and 5 to complexes 1 and 4, respectively, and the overall reduction process complex 9 --> complex 8 --> complex 7 takes place in the pi* orbital of NO. In addition, geometric parameters, wavenumbers related to bond stretching, and analysis of electron density by the QTAIM and NBO methods showed that the thermodynamic stability of the Ru-NO bond in complexes 1-6 increases in the first reduction (on going from total charge 3+ to 2+), but it decreases in the second reduction (on going from 2+ to 1+). For complexes 7-9, the stability of the Ru-NO bond decreases in the first reduction, but it increases in the second reduction. This is because interaction between NO and Ru is more favorable in complex 7 than interaction between NO and Ru in complex 8. For NO, the bond order decreases upon reduction of the total charge in the three classes of complexes: 1-3, 4-6, and 7-9. For the complexes containing the chlorine atom, it is possible to observe that the chloride group increases the electron density and provides a more favorable electrostatic interaction in the Ru-NO bond as compared to the complexes containing amine only. The results also indicate increased stability of the Ru-NO bond in complexes 1-3 as compared to complexes 4-6. As a result, the electrostatic interaction between Cl and NO is larger in complexes 1 and 3 as compared to complexes 4 and 6, respectively. We investigated the influence of the Effective Core Potential (ECP) in relation to the treatment involving all the electrons along the scalar relativistic effects obtained by the secondorder Douglas-Kroll-Hess (DKH2) approximation by analyzing the geometric parameters of complexes 1-9 and trans-[RuCl(NO)(NH3)4], 10. By using the ECP basis set, we determined the energies of reduction (A: 2-->1, B: 3-->2, C: 5-->4, D: 6-->5, E: 8-->7, and F: 9-->8), isomerization (G: 1-->4, H: 2-->5, and I: 3-->6), and Cl negative trans influence (J: 7+Cl- --> 10+NH3, K: 8+Cl- --> 5+NH3, and L: 9+Cl- --> 6+NH3) with the computational methods: RI-MP2, RI-SCS-MP2, OO-RI-MP2, OO-R-ISCS-MP2, M06-L, M06, M06-2X, M06-HF, BP86-D3BJ, BP86, B2PLYP, LC-wPBE, and B3LYP. We adopted the CCSD(T) method as reference (Chapter 6). For the statistical analysis, we used the following parameters: minimal negative deviation, Dneg(Min); maximum positive deviation, Dpos(Max); medium absolute deviation, MAD; and rootmeansquare, RMS. In addition to these results, we used values relative to the computational model used as reference, CCSD(T)/def2TZVP, or even a comparison with the experimental results. The geometric parameters obtained with ECP were very close to the values obtained with DKH2 - we achieved MARD values of 1.4 and 0.4% for the bond lengths and angles, respectively. Besides that, the calculated data had MARD values close to 4% as compared to the X-ray experimental results for bond lengths and MARD values close to 3% for the bond angles. These results are acceptable, despite deviation intervals of (5%) - 9% for r, and (5%) - 7% for <. Concerning the reaction energies, the B2PLYP method gave the closest values in relation to those obtained by CCSD(T) in A-I, whereas B3LYP showed the best performance in the proposed chemical reactions J-L. We also studied the nature of the Ru-NO and Ru-NO2 bonds in the compound fac-[Ru(NO)Cl2(3N4,N8,N11(1-carboxypropyl)cyclam)]+ as well as its derivatives obtained upon changes in pH by the computational model B3LYP/ccpVDZ with pseudopotential ECP28MDF for ruthenium. The electronic structure was analyzed with the aid of the density overlap regions indicator (DORI), QTAIM, ELF, and NBO methods (Chapter 7). The DORI method identified a region where the electron density of Ru and NO or NO2 overlapped, which indicated the presence of the Ru-NO or Ru-NO2 chemical bond. The QTAIM and ELF methods showed that these bonds have low covalent character. Investigation of the electron density demonstrated that the number of electrons shared between Ru and NO increases on going from complex 11 to complex 12, when carboxyl group is deprotonated. However, this number decreases with increasing pH and formation of complex 13, from deprotonation of N(2), and complex 14, with conversion of Ru-NO to Ru-NO2. By using NBO, we also observed interaction between the localized d orbitals of Ru and the pi* orbital of NO or NO2. This interaction is related to the pi backdonation process, which is more favorable to the stabilization of complexes 11-14 than the interaction between the sigma NBOs of NO or NO2 with the d-sigma orbital of Ru, associated with the donation route. Successively, the second order stabilization energy involving the NBOs with symmetry increases on going from complex 11 to complex 12 due to the decreased energy difference and increased overlap between these localized orbitals. The opposite trend is observed on going from complex 12 to complexes 13 and 14, in agreement with previous results. We examined the Ru-NO bond mechanism in the complex trans-[RuCl(NO)(NH3)4]2+ (Chapter 8). Then, we obtained the geometry of this compound and the bond dissociation energy (-Delta-E) of the decompositions trans-[RuCl(NH3)4]+ + NO+, trans-[RuCl(NH3)4]2+ + NO, and trans-[RuCl(NH3)4]3+ + NO by using the computational models ZORA-BP86/TZ2P and BP86/TZ2P, to evaluate how the ZORA approximation influenced treatment of the relativistic effects. Both computational models agreed well with the geometric parameters obtained by X-ray diffraction in the literature. Nevertheless, the values of -Delta-E were significantly different, so we adopted the ZORA-BP86/TZ2P model in the subsequent discussions. The dissociation trans-[RuCl(NH3)4]+ + NO+ gave the lowest -Delta-E, which agreed with a value for the Ru-NO bond angle close to 180º and is typical of trans-[Ru(NO)L(NH3)4]n+ that are EPR silent. We used this decomposition along with the Kohn-Sham molecular orbital theory in combination with the energetic decomposition analysis to highlight some important characteristics of the Ru-NO bond mechanism. Investigation of the negative trans influence of the Cl- group on Ru-NO revealed a favorable interaction energy for the interaction between trans-[RuCl(NH3)4]+ and NO+ - in this structure, the interaction term of the pi orbital counterbalances the electrostatic repulsion and the Pauli repulsion. We also studied the Ru-NO bond in the absence of the Cl- group for trans-[Ru(NH3)4]2+ and NO+. The interaction is repulsive because electrostatic repulsion predominates in relation to the attractive contribution of the interaction of the pi orbital. We also analyzed the RuCl bond in the absence of NO+ for trans-[Ru(NH3)4]2+ and Cl. The interaction is attractive due to the considerable value of the favorable electrostatic term. Investigation of the synergism between the processes of sigma donation and pi backdonation present in Ru-NO showed that this synergism accounts for the increased stability of this bond. The pi component is essential for maintenance of this chemical bond
A descoberta das novas propriedades químicas da molécula de óxido nítrico, relacionadas principalmente a processos fisiológicos e fisiopatológicos, promoveu um avanço nas pesquisas científicas ligada ao controle da disponibilidade desta molécula em meio biológico. Sendo que compostos, que possuem especialmente rutênio e ligantes, tais como, amina e tetraazomacrocíclicos são utilizadas como modelo devido a suas propriedades como, por exemplo, estabilidade frente à oxidação promovida pelo ar, solubilidade em água e baixa citoxicidade contra células hospedeiras. Assim, devido às propriedades peculiares do óxido nítrico, foi realizado em primeiro lugar um experimento computacional baseado no diagrama de orbitais moleculares do NO e em exercícios de química quântica computacional envolvendo também seu monocátion (NO+) e monoânion (NO) (Capítulo 3). Os estudantes iniciaram este experimento explorando as estruturas de Lewis de NO+, NO e NO junto ao diagrama de orbitais moleculares do NO obtendo uma correlação com diferentes propriedades, por exemplo, comprimentos de ligação, e cargas atômicas. Em seguida, os valores dos comprimentos de ligação e frequências vibracionais calculados foram comparados com os dados experimentais encontrados em bancos de dados na internet, permitindo uma discussão a respeito das diferenças observadas. Em seguida, distintas aproximações foram utilizadas para o cálculo das cargas atômicas parciais demonstrando a dificuldade na determinação deste parâmetro, uma vez que este não é uma observável física e, consequentemente, não há um operador mecânico quântico para a obtenção desta grandeza. Além disso, o momento de dipolo calculado do NO, 0,153 D, com B3LYP/631+G(d,p), é próximo ao valor experimental, mais aceito, em contaste a uma recente determinação que indica uma carga negativa concentrada no sentido do átomo de nitrogênio. O experimento termina com dois tópicos de grande interesse para a química computacional. Onde, em primeiro lugar, foi realizada uma investigação de como propriedades, tais como, cargas e densidades de spin atômicas se comportam com o aumento do conjunto de base. E em segundo lugar, o cálculo de energias eletrônicas precisas foi possível com a extrapolação do conjunto de base pcn, n = 24, para n igual a infinito. Dada à relevância da molécula de óxido nítrico e o papel da água como solvente em meio biológico, também foi realizado o estudo computacional da interação entre NO, NO+, e NO com H2O: [NO.H2O], 0, [NO.H2O]+, 0+, e [NO.H2O], 0 (Capítulo 4). Onde, as geometrias otimizadas destes clusters indicam que a interação NO.H2O depende da carga total: (ON.HOH), (NO.HOH) e (ON+.OH2). Sendo que as densidades de spin atômicas e a forma dos orbitais moleculares indicam que a partir de 0 para 0+ ou 0 os processos de oxidação ou redução, respectivamente, ocorrem sobre o NO, ou mais especificamente sobre o átomo de nitrogênio. Logo, os métodos quantum theory of atoms in molecules (QTAIM), electron localization function (ELF) e natural bondbond polarizability (NBBP) permitem quantificar o nível de deslocalização eletrônica entre o NO e o H2O: 0+ > 0 > 0, e mostram um caráter predominantemente iônico para as interações intermoleculares, porém, primariamente covalente para as ligações químicas intramoleculares. Destarte, a analise energética obtida junta aos métodos natural bond orbital (NBO) e localized molecular orbital energy decomposition (LMOEDA) para a interação entre NO e H2O nos complexos 0, 0+, e 0 demostra ser mais favorável em 0 do que 0+, e 0 quanto a influência mútua dos orbitais naturais de ligação, ao passo que o segundo método designa uma energia de interação total mais negativa para 0+ em relação a 0,e 0, devido ao seu componente eletrostático predominante. Para concluir, a análise das superfícies de potenciais eletrostáticos fornece uma explicação direta e clara a respeito da posição relativa dos monômeros. Em seguida, a atração de Coulomb entre a molécula de água e os compostos carregados NO+ e NO é mais favorável frente ao NO. Por conseguinte, considerando compostos capazes de controlar a disponibilidade do NO, foram investigados os seguintes complexos: cis[RuCl(NO)(NH3)4]+, 1, cis[RuCl(NO)(NH3)4]2+, 2, cis[RuCl(NO)(NH3)4]3+, 3, trans[RuCl(NO)(NH3)4]+, 4, trans[RuCl(NO)(NH3)4]2+, 5, trans[RuCl(NO)(NH3)4]3+, 6, [Ru(NO)(NH3)5]+, 7, [Ru(NO)(NH3)5]2+, 8, e [Ru(NO)(NH3)5]3+, 9, de modo estudar a natureza da ligação química RuNO sobre a influência da carga total, bem como, da natureza e posição relativa de ligantes simples (Capítulo 5). Desta forma, em primeiro lugar, a partir da analise das cargas obtidas pelos métodos QTAIM e NBO em conjunto com a representação dos orbitais moleculares, temos que a primeira redução química em 3-->2 e 6-->5 ocorre sobre o orbital do átomo de Cl, ao passo que a segunda redução em 2-->1 e 5-->4, bem como, em 9-->8-->7 é sobre o orbital * do NO. Em seguida, os parâmetros geométricos, números de onda vibracionais de estiramento, e a analise da densidade eletrônica pelos métodos QTAIM e NBO mostram que a estabilidade termodinâmica da ligação RuNO nos compostos 16 aumenta na primeira redução, a partir de 3+ para 2+, contudo, diminuem na segunda redução, a partir de 2+ para +. Para os compostos 79, a estabilidade de RuNO diminui com a primeira redução da carga total, mas, aumenta na segunda redução. Sendo que o último processo é explicado pela interação entre o NO, e o Ru ser mais favorável em 7, do que o NO e o metal em 8. Para NO, uma diminuição da ordem de ligação é visualizada com a redução da carga total nas três classes de complexos: 13, 46 e 79. Em 16, a comparação das moléculas 1 e 4 frente a 8, assim como, 2 e 5 em relação a 9 demonstra que a influência negativa do grupo cloreto relativo a contribuição do ligante amina promove uma maior densidade eletrônica e mais favorável interação eletrostática na ligação RuNO. Adicionalmente, os resultados indicam um aumento da estabilidade em RuNO para 13 comparado a 46, devido à interação eletrostática entre Cl, e NO, apesar da densidade eletrônica nesta ligação química ser maior somente em 1 e 3 frente a 4 e 6, respectivamente. A seguir, foi realizado um estudo da influência do Effective Core Potential (ECP) em relação ao tratamento envolvendo todos os elétrons junto aos chamados efeitos relativísticos escalares por meio da aproximação secondorder DouglasKrollHess (DKH2). Isto foi realizado por meio da analise dos parâmetros geométricos dos complexos metálicos: 19 e trans[RuCl(NO)(NH3)4], 10. A partir das geometrias otimizadas com o conjunto de base com ECP, também foram avaliadas as energias das reações químicas de redução (A: 2-->1, B: 3-->2, C: 5-->4, D: 6-->5, E: 8-->7 e F: 9-->8), isomerização (G: 1-->4, H: 2-->5 e I: 3-->6), e influência trans negativa do Cl (J: 7+Cl --> 10+NH3, K: 8+Cl --> 5+NH3 e L: 9+Cl --> 6+NH3) junto aos seguintes métodos computacionais: RIMP2, RISCSMP2, OORIMP2, OORISCSMP2, M06L, M06, M062X, M06HF, BP86D3BJ, BP86, B2PLYP, LCwPBE, e B3LYP. Sendo que o método CCSD(T) foi adotado como referência (Capítulo 6). Para a análise estatística foram utilizados os seguintes parâmetros: desvio negativo mínimo, Dneg(Mín), desvio positivo máximo, Dpos(Máx), desvio absoluto médio, DAM, e raiz quadrada do erro quadrático médio, RQEQM. Além destes parâmetros, foram empregados também valores relativos ao modelo computacional adotado como referência, CCSD(T)/def2TZVP, ou mesmo frente a resultados experimentais. Agora, os parâmetros geométricos obtidos com ECP frente à DKH2 apresentam valores próximos como pode ser destacado pelos valores do desvio absoluto médio relativo, DAMR, de 1,4 e 0,4% para os comprimentos e ângulos de ligação, respectivamente. Em adição, os dados calculados frente aos resultados experimentais de raiosX apresentam pequenos valores de DAMR, próximos a 4% para os comprimentos de ligação, e 3% para os ângulos de ligação, apesar do intervalo de desvios serem de (5%) 9% para r, e (5%) 7% para <. Para as energias das reações químicas propostas, o método B2PLYP apresentou resultados mais próximos ao obtido pelo CCSD(T) para AI, enquanto que o método B3LYP apresentou as energias mais próximas às obtidas com o método de referência para JL. Também foi estudada a natureza das ligações RuNO e RuNO2 no composto fac[Ru(NO)Cl2(3N4,N8,N11(1carboxipropil)cyclam)]Cl H2O ((1carboxipropil)cyclam) = 3(ácido 1,4,8,11tetraazociclotetradecan1il)propiônico), e em seus derivados junto as modificações do pH, por meio do modelo computacional B3LYP/ccpVDZ com pseudopotencial relativístico ECP28MDF para o Ru. Onde a analise da estrutura eletrônica foi realizada através dos métodos density overlap regions indicator (DORI), QTAIM, ELF e NBO (Capítulo 7). O método DORI permitiu se identificar uma região de recobrimento de densidade eletrônica entre o Ru e NO ou NO2 indicando a presença das ligações químicas RuNO e RuNO2. Os métodos QTAIM e ELF mostraram que estas ligações possuem um baixo caráter covalente. A analise da densidade eletrônica mostrou que o numero de elétrons compartilhados entre Ru e o NO aumenta a partir de 11 para 12, com a desprotonação do grupo carboxílico, porém, diminui com o aumento de pH e formação de 13, a partir da desprotonação de N(2), e 14, com a conversão da ligação RuNO para RuNO2. O método NBO também possibilitou determinar a interação entre os orbitais localizados d do Ru com * do NO ou NO2, relacionada ao processo de retrodoação , como mais favorável para a estabilização dos compostos 1114 frente à interação entre os NBOs do NO ou NO2 com d do Ru, pautada ao processo de doação . Sendo que a energia de estabilização de segunda ordem envolvendo os NBOs de simetria aumenta em 11-->12, devido à diminuição da diferença de energia e o aumento do recobrimento entre estes orbitais localizados. Entretanto, foi observada uma tendência contrária para 12-->13-->14, concordando com os resultados prévios. O mecanismo da ligação RuNO foi analisado a partir do complexo trans[RuCl(NO)(NH3)4]2+ (Capítulo 8). A geometria deste composto e a energia de dissociação de ligação (E) para as decomposições: trans[RuCl(NH3)4]+ + NO+, trans[RuCl(NH3)4]2+ + NO, e trans[RuCl(NH3)4]3+ + NO, foram obtidas junto aos modelos computacionais: ZORABP86/TZ2P e BP86/TZ2P, com o objetivo da avaliar a influência da aproximação ZORA no tratamento dos efeitos relativísticos. Os resultados mostraram que ambos os modelos computacionais apresentam uma boa concordância com os parâmetros geométricos obtidos por difração de raiosX que foram encontrados na literatura. Entretanto, os valores de E apresentaram uma diferença mais acentuada, e o modelo ZORABP86/TZ2P foi adotado nas seções seguintes deste estudo. Outro ponto é que a menor E foi obtida para trans[RuCl(NH3)4]+ + NO+, concordando com o ângulo de ligação RuNO próximo a 180º típico de compostos trans[Ru(NO)L(NH3)4]n+ que não apresentam sinais de EPR. Sendo assim, esta decomposição foi utilizada junto à teoria do orbital molecular de KohnSham em combinação com analise de decomposição energética para destacar algumas características do mecanismo da ligação RuNO. Assim sendo, na ligação RuNO sobre a influência trans negativa do Cl, estudada por meio da interação entre trans[RuCl(NH3)4]+ e NO+, temos uma energia de interação favorável porque, nesta estrutura, o termo de interação orbital contrabalança a repulsão eletrostática e a repulsão de Pauli. Por outro lado, a ligação RuNO na ausência do grupo Cl foi estudada através da interação entre trans[Ru(NH3)4]2+ e NO+, demostrando ser repulsiva devido a predominância da repulsão eletrostática frente a contribuição atrativa da interação orbital . Agora, a ligação RuCl na ausência de NO+, analisada a partir da interação entre trans[Ru(NH3)4]2+ e Cl, é atrativa devido ao considerável valor do termo eletrostático favorável. Ainda, o estudo do sinergismo entre os processos de doação e retrodoação presentes em RuNO mostrou que este é responsável por aumentar a estabilidade desta ligação. Porém, a retrodoação demonstrou não ser somente a mais importante, mas, também fundamental para a manutenção desta ligação química
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Haire, Geoffrey Robert. "Ruthenium catalysed oxidation of organic compounds". Thesis, University of Cambridge, 1994. https://www.repository.cam.ac.uk/handle/1810/272775.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Liang, Jianglin, e 梁江林. "Ruthenium-catalyzed carbon-nitrogen bond formations". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2003. http://hub.hku.hk/bib/B31245729.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

劉純晶 e Chunjing Liu. "Nonplanar and sterically encumbered ruthenium porphyrins and catalyticreactivity of ruthenium and manganese porphyrin complexes supported onMCM-41". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1998. http://hub.hku.hk/bib/B31237423.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

楊志雄 e Chi-hung Yeung. "Organic oxidation catalysed by ruthenium and manganese macrocycles". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1993. http://hub.hku.hk/bib/B31233971.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Yeung, Chi-hung. "Organic oxidation catalysed by ruthenium and manganese macrocycles /". [Hong Kong : University of Hong Kong], 1993. http://sunzi.lib.hku.hk/hkuto/record.jsp?B13883896.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Wong, Kwok-ming, e 黃國明. "Ruthenium-nitrogen and ruthenium-phosphorus multiple bonds supported by phthalocyanines: syntheses, spectroscopicproperties, and reactivities". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2010. http://hub.hku.hk/bib/B45545893.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Park, Sunghan. "Planar chiral arene ruthenium complexes". Thesis, Canberra, ACT : The Australian National University, 1993. http://hdl.handle.net/1885/140056.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Liu, Chunjing. "Nonplanar and sterically encumbered ruthenium porphyrins and catalytic reactivity of ruthenium and manganese porphyrin complexes supported on MCM-41 /". Hong Kong : University of Hong Kong, 1998. http://sunzi.lib.hku.hk/hkuto/record.jsp?B19737518.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Libri sul tema "Ruthenium compounds"

1

1937-, Murahashi Shunʾichi, a cura di. Ruthenium in organic synthesis. Weinheim: Wiley-VCH, 2004.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Knox, G. R., a cura di. Organometallic Compounds of Ruthenium and Osmium. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4615-5429-5.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Billah, Syed Abul Muzaddad Mustafij. Half-sandwich indenyl and related compounds of ruthenium(II). Salford: University of Salford, 1995.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Moi, Yeoh Lee. Phase formation and superconductivity in copper oxide based YBCO and RU-1212 and RU-1222 systems prepared by sol-gel and coprecipitation techniques. Hauppauge, N.Y: Nova Science Publishers, 2011.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Murahashi, Shun-Ichi. Ruthenium in Organic Synthesis. Wiley & Sons, Limited, John, 2005.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Murahashi, Shun-Ichi. Ruthenium in Organic Synthesis. Wiley-VCH, 2004.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Murahashi, Shun-Ichi. Ruthenium in Organic Synthesis. Wiley & Sons, Incorporated, John, 2006.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

1934-, Knox G. R., a cura di. Organometallic compounds of ruthenium and osmium. London: Chapman and Hall, 1985.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

R, Knox G., a cura di. Organometallic compounds of ruthenium and osmium. London: Chapman and Hall, 1985.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

The barium iron ruthenium oxide system. Washington DC: National Aeronautics and Space Administration, 1987.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Capitoli di libri sul tema "Ruthenium compounds"

1

Hopkins, Samantha L., e Sylvestre Bonnet. "Ligand Photosubstitution Reactions with Ruthenium Compounds". In Ruthenium Complexes, 89–116. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527695225.ch5.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Macintyre, J. E. "Ru Ruthenium". In Dictionary of Organometallic Compounds, 305–9. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4615-6847-6_44.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

MacIntyre, Jane E. "Ru Ruthenium". In Dictionary of Organometallic Compounds, 221–36. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4899-6848-7_47.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Macintyre, J. E., F. M. Daniel, D. J. Cardin, S. A. Cotton, R. J. Cross, A. G. Davies, R. S. Edmundson et al. "Ru Ruthenium". In Dictionary of Organometallic Compounds, 179–84. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4757-4966-3_48.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Jakupec, Michael A., Wolfgang Kandioller, Beatrix Schoenhacker-Alte, Robert Trondl, Walter Berger e Bernhard K. Keppler. "Trends and Perspectives of Ruthenium Anticancer Compounds (Non-PDT)". In Ruthenium Complexes, 271–91. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527695225.ch14.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Nagy, Zoltán. "Ru—Ruthenium". In Electrochemical Synthesis of Inorganic Compounds, 392. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4899-0545-1_56.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Knox, G. R. "Ru Ruthenium". In Organometallic Compounds of Ruthenium and Osmium, 71–209. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4615-5429-5_2.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Matos, António, Filipa Mendes, Andreia Valente, Tânia Morais, Ana Isabel Tomaz, Philippe Zinck, Maria Helena Garcia, Manuel Bicho e Fernanda Marques. "Ruthenium-Based Anticancer Compounds: Insights into Their Cellular Targeting and Mechanism of Action". In Ruthenium Complexes, 201–19. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527695225.ch10.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Courtney, John L. "Ruthenium Tetroxide Oxidations". In Organic Syntheses by Oxidation with Metal Compounds, 445–67. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2109-5_8.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Yamamoto, Yoshihiko, e Kenji Itoh. "Ruthenium-Catalyzed Synthesis of Heterocyclic Compounds". In Ruthenium Catalysts and Fine Chemistry, 249–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/b94646.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Atti di convegni sul tema "Ruthenium compounds"

1

Moghimi Waskasi, Morteza, Beheshteh Sohrabi e S. Majide Hashemianzadeh. "Computational Studies of Water Splitting by Using Ruthenium Organometalic Compounds". In The 14th International Electronic Conference on Synthetic Organic Chemistry. Basel, Switzerland: MDPI, 2010. http://dx.doi.org/10.3390/ecsoc-14-00393.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

G. Teixeira, Ricardo, Dimas C. Belisario, Ana Isabel Tomaz, Maria Helena Garcia, Chiara Riganti e Andreia Valente. "Ruthenium organometallic compounds as ABC drug efflux-targeted agents and collateral sensitizers". In 6th International Electronic Conference on Medicinal Chemistry. Basel, Switzerland: MDPI, 2020. http://dx.doi.org/10.3390/ecmc2020-07439.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Antonichen, Magno R., Sergio R. de Lazaro, Luis H. S. Lacerda, Flavia Marszaukowski, Ivelise D. L. Guimarães, Karen Wohnrath e Rene Boere. "DFT simulations for the [6-p-cymene)RuCl2(apy)] complex". In VIII Simpósio de Estrutura Eletrônica e Dinâmica Molecular. Universidade de Brasília, 2020. http://dx.doi.org/10.21826/viiiseedmol202097.

Testo completo
Abstract (sommario):
Anticarcinogen compounds are extensively investigated in current days. Among the potential alternatives to develop effective drugs for this purpose, stands out the ruthenium (II) complex presents satisfactory anti-tumor activity. In particular, this kind of compounds has been investigated as a possible substitute for Platinum-based drugs. However, Ru (II) complexes need more investigation to understand the ligands' effect on biological environments, such as cytotoxicity, metabolism, accumulation on tumor issues, and others. Therefore, in this work, a robust DFT/B3LYP theoretical investigation was performed using GAUSSIAN09 in order to investigate the effects of the +1 and -1 charges on structural and electronic properties of the (6-p-cymene)Ru(II)Cl2(apy) complex. The structure evaluation indicates that +1 charged complex has a slight reduction on the Ru – cymene, Ru – Cl and Ru – apy bond lengths regarding the neutral complex. On the other hand, -1 charged complex shows bond lengths very similar to the neutral compound, except by a very large distance between Ru and one Cl atom, indicating that such atoms were expelled.
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Peterka, Darcy S., Volodymyr Nikolenko, Elodie Fino, Roberto Araya, Roberto Etchenique e Rafael Yuste. "Fast two-photon neuronal imaging and control using a spatial light modulator and ruthenium compounds". In BiOS, a cura di Nikiforos Kollias, Bernard Choi, Haishan Zeng, Reza S. Malek, Brian J. Wong, Justus F. R. Ilgner, Kenton W. Gregory et al. SPIE, 2010. http://dx.doi.org/10.1117/12.842606.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Santos, José V. Dos, Sergio R. de Lazaro, Luis H. S. Lacerda, Renan A. P. Ribeiro, Flavia Marszaukowski, Ivelise D. L. Guimarães, Karen Wohnrath e Rene Boere. "Theoretical simulation for the [6-p-cymene)RuCl2(meapy)] complex". In VIII Simpósio de Estrutura Eletrônica e Dinâmica Molecular. Universidade de Brasília, 2020. http://dx.doi.org/10.21826/viiiseedmol2020196.

Testo completo
Abstract (sommario):
Anticarcinogen compounds are extensively investigated in current days. Among the potential alternatives to develop effective drugs for this purpose, stands out the ruthenium (II) complex presents satisfactory anti-tumor activity. In particular, this kind of compounds has been investigated as a possible substitute for Platinum-based drugs. However, Ru (II) complexes need more investigation to understand the ligands' effect on biological environments, such as cytotoxicity, metabolism, accumulation on tumor issues, and others. Therefore, in this work, a robust DFT/B3LYP theoretical investigation was performed using GAUSSIAN09 in order to investigate the effects of the water solvent on structural and electronic properties of the (6-p-cymene)Ru(II)Cl2(meapy) complex. The results indicate meaningful structural changes regarding gas phase due to water solvation. Likewise, the electronic results suggest the minimization of the frontier orbitals energy by water solvent while the molecular orbital composition is not affected.
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Yamaguchi, Harunaka, Eiji Nakai, Hiroyuki Kawahara, Takehiro Nishida e Hitoshi Watanabe. "Optimizing the concentration profile of Zn with ruthenium doped InP". In 2016 Compound Semiconductor Week (CSW) [Includes 28th International Conference on Indium Phosphide & Related Materials (IPRM) & 43rd International Symposium on Compound Semiconductors (ISCS)]. IEEE, 2016. http://dx.doi.org/10.1109/iciprm.2016.7528568.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Cheng, Jie, Tongqing Wang, Jie Wang, Yongyong He e Xinchun Lu. "Ruthenium and Copper CMP in periodate-based slurry with BTA and K2MoO4 as compound corrosion inhibitors". In 2014 International Conference on Planarization/CMP Technology (ICPT). IEEE, 2014. http://dx.doi.org/10.1109/icpt.2014.7017283.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Heffeter, Petra, Bihter Atil, Ute Jungwirth, Wilfried Koerner, Michael Micksche, Bernhard K. Keppler e Walter Berger. "Abstract C103:In vitroandin vivoanticancer activity of the new ruthenium compound KP1339 against human liver cancer models". In Abstracts: AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics--Nov 15-19, 2009; Boston, MA. American Association for Cancer Research, 2009. http://dx.doi.org/10.1158/1535-7163.targ-09-c103.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Heffeter, Petra, Bihter Atil, Kushtrim Kryeziu, Ute Jungwirth, Elisabeth Gal, Bernhard K. Keppler e Walter Berger. "Abstract 3541: Combination of the ruthenium compound KP1339 with the tyrosine kinase inhibitor sorafenib: A promising approach for the treatment of human hepatoma". In Proceedings: AACR 102nd Annual Meeting 2011‐‐ Apr 2‐6, 2011; Orlando, FL. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1538-7445.am2011-3541.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Rapporti di organizzazioni sul tema "Ruthenium compounds"

1

Hartwig, J. F. Synthesis and reactivity of compounds containing ruthenium-carbon, -nitrogen, and -oxygen bonds. Office of Scientific and Technical Information (OSTI), dicembre 1990. http://dx.doi.org/10.2172/5530662.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!

Vai alla bibliografia