Tesi sul tema "Robots hétérogènes"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Vedi i top-17 saggi (tesi di laurea o di dottorato) per l'attività di ricerca sul tema "Robots hétérogènes".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Vedi le tesi di molte aree scientifiche e compila una bibliografia corretta.
Chenchana, Bilel. "Localisation collaborative visuelle-inertielle de robots hétérogènes communicants". Thesis, Limoges, 2019. http://www.theses.fr/2019LIMO0018/document.
Testo completoLocalization is of crucial importance for robots navigation. This importance has allowed the emergence of several precise localization techniques. Our contribution consists of proposing a transition from an individual inertial visual localization technique to the multi-robots collaborative localization case. This work aims to achieve a collaborative localization as fast, robust and accurate as the individual starting technique. We adopt a tightly coupled MSCKF (Multi State Constraint Kalman Filter) approach to achieve the data fusion. The characteristics of this data fusion are first studied in the individual case to test the robustness and the precision under different conditions and with different observation models. The results of this study directed us towards the best structure adapted to an augmentation to the collaborative localization case. The proposed collaborative algorithm is a hierarchical process of three stages. A collaborative localization is initialized based on the relative distance measurements using Ultra-Wide Band (ULB) sensors. Then, a collaborative localization based on images overlapping using a suitable measurement model, and a data fusion structure that absorbs the computation time excess caused by the collaboration is achieved. Finally, to increase precision, an extraction of the environment constraints, followed by an integration using a truncation in the filter are proposed
Séverac, Gaëtan. "Étude et simulation des mécanismes d'interaction pour l'exécution de missions d'exploration planétaire réalisées par un ensemble d'engins hétérogènes". Toulouse 3, 2013. http://thesesups.ups-tlse.fr/2696/.
Testo completoThe purpose of this research is to change the way planetary exploration missions are handled. ?Currently, much research focuses on increasing autonomy from the ground of the devices sent,?but we stay in a single-engine overall scheme where each machine is managed individually. ?In the future, planetary exploration will evolve into more complex automated missions involving numerous and heterogeneous devices such as rovers, orbiters, fixed stations, UAVs, airships, mobiles sensors or even submarine. In addition, missions will be executed in phases related to the arrival of new machines or the end of the activity of others. It is difficult to imagine that the whole supervision process of such a mission can be effectively managed from Earth. The subject of this research is to study the interaction mechanisms that might be embedded in the agents to improve, for example, the autonomy of an insertion phase of a new machine in a pre-existing teams network. It is particularly important to consider how we can characterize the "skills" of an agent and how devices would, dynamically, share this information in order to build an appropriate teams and achieve the mission objectives. The overall theme is about the dynamic and autonomous organization of multi-agent systems
Robin, Cyril. "Modèles et algorithmes pour systèmes multi-robots hétérogènes : application à la patrouille et au suivi de cible". Thesis, Toulouse, INSA, 2015. http://www.theses.fr/2015ISAT0037/document.
Testo completoDetecting, localizing or following targets is at the core of numerous robotic applications in industrial, civilian and military application contexts. Much work has been devoted in various research communities to planning for such problems, each community with a different standpoint. Our thesis first provides a unifying taxonomy to go beyond the frontiers of specific communities and specific problems, and to enlarge the scope of prior surveys. We review various work related to each class of problems identified in the taxonomy, highlighting the different approaches, models and results. This analysis specifically points out the lack of representativityof the exploited models, which are in vast majority only 2D single-layer models where motion and sensing are mixed up. We consider those unrealistic models as too restrictive to handle the full synergistic potential of an heterogeneous team of cooperative robots. In response to this statement, we suggest a new organisation of the necessary models, stating clearly the links and separation between models and planning algorithms. This has lead to the development of a C++ library that structures the available models and defines the requests required by the planning process. We then exploit this library through a set of algorithms tackling area patrolling and target tracking. These algorithms are supported by a sound formalism and we study the impact of the models on the observed performances, with an emphasis on the complexity and the quality of the resultingsolutions. As a more general consideration, models are an essential link between Artificial Intelligence and applied Robotics : improving their expressiveness and studying them rigorously are the keys leading toward better robot behaviours and successful robotic missions. This thesis help to show how important the models are for planning and other decision processes formulti-robot missions
Nico, Thibaut. "Étude et développement de solutions de relocalisation d'objets sous-marins par des véhicules sous-marins hétérogènes". Thesis, Brest, École nationale supérieure de techniques avancées Bretagne, 2019. http://www.theses.fr/2019ENTA0005.
Testo completoIn the Mine Counter Measure (MCM) context in the underwater environment, it is vital to revisit some potentially dangerous objects to identify and neutralize them if they are actually mines. This dangerous task was usually performed by humandivers but more and more it is conducted by unmanned underwater robots. Due to the low cost design of the revisit/mine-killer robot, going straightforward to the geolocalized suspicious object does not guarantee that the robot will redetect it.Moreover the robot may dive at a far position from the target and the lack of absolute positioning system in underwater environment demands a strategy to follow to guarantee the revisit of this target. Based on a priori information in the working area and especially the presence of geolocalized landmarks, the problem is solved as a motion planning problem considering uncertainties due to the increasing error when navigating underwater. In the context of bounded errors, the problem is solved in a set-membership manner. Firstly, based on the location and the shape of the landmarks, and on the visibility area of the sensor embedded, the registration maps are computed indicating the sets of robot poses to detect the different landmarks considered in order to reduce the uncertainty on the robot position. Secondly, based on a parametric motion model with uncertain parameters, an high level strategy is provided through a raph optimization. The strategy consists in navigating between the registration maps toreduce each times the uncertainty in position of therobot and finally to guarantee the reachability of agoal area corresponding to the redetection of the target
Parodi, Olivier. "Simulation hybride pour la coordination de véhicules hétérogènes au sein d'une flottille". Montpellier 2, 2008. http://www.theses.fr/2008MON20198.
Testo completoGerma, Thierry. "Fusion de données hétérogènes pour la perception de l'homme par robot mobile". Phd thesis, Toulouse 3, 2010. http://thesesups.ups-tlse.fr/1016/.
Testo completoThis work has been realized under the CommRob European project involving several academic and industrial partners. The goal of this project is to build a robot companion able to act in structured and dynamic environments cluttered by other agents (robots and humans). In this context, our contribution is related to multimodal perception of humans from the robot (users and passers-by). The multimodal perception induces the development and integration of perceptual functions able to detect, to identify the people and to track the motions in order to communicate with the robot. Proximal detection of the robot's users uses a multimodal perception framework based on heterogeneous data fusion from different sensors. The detected and identified users are then tracked in the video stream extracted from the embedded camera in order to interpret the human motions. The first contribution is related to the definition of perceptual functions for detecting and identifying humans from a mobile robot. The second contribution concerns the spatio-temporal analysis of these percepts for user tracking. Then, this work is extended to multi-target tracking dedicated to the passers by. Finally, as it is frequently done in robotics, our work contains two main topics: on one hand the approaches are formalized; on the other hand, these approaches are integrated and validated through live experiments. All the developments done during this thesis has been integrated on our platform Rackham and on the CommRob platform too
Razafimandimby, Anjalalaina Jean Cristanel. "Toward internet of heterogeneous things : wireless communication maintenance and efficient data sharing among devices". Thesis, Lille 1, 2017. http://www.theses.fr/2017LIL10074/document.
Testo completoDespite of the large success of IOT, most of its applications are based only on static actuation. However, adding an active role for actuators will be needed, in order to optimize the systems where they are present. To achieve this goal, in this thesis, we introduce a new concept called Internet of Heterogeneous Things which takes into account both static and dynamic actuation. The dynamic actuation is provided by a mobile robot or a mobile sensor. In this case, we exploit the potential of controlled mobility by proposing efficient algorithms to maintain the global connectivity among devices. We show by simulation the efficiency of the proposed algorithms and their performance in terms of convergence time, connectivity, and traveled distance. Once the connectivity among devices is guaranteed, another major challenge that should be solved is the huge amount of data they generate and transmit. To tackle this problem, we propose a Bayesian Inference Approach which allows avoiding the transmission of high correlated data. Belief Propagation algorithm, coupled with the Markov Random Field model, is used in this case to reconstruct the missing sensing data. According to different scenarios, our approach is evaluated based on the real data collected from sensors deployed on indoor and outdoor environments. The results show that our proposed approach reduces drastically the number of transmitted data and the energy consumption, while maintaining an acceptable level of inference error and information quality
Parodi, Olivier. "Simulation hybride pour la coordination de véhicules hétérogènes au sein d'une flottille". Phd thesis, Université Montpellier II - Sciences et Techniques du Languedoc, 2008. http://tel.archives-ouvertes.fr/tel-00373347.
Testo completoLa complexité des architectures de contrôle d'une part et les difficultés soulevées par le choix de stratégies de contrôle multi-véhicules d'autre part, rendent nécessaires la création de nouveaux outils de simulation permettant de tester et valider lois de commande et architectures de contrôle tout en détectant les inconsistances préliminaires des scenarios envisagés. L'objet de cette thèse est donc l'étude d'un outil de simulation collaboratif appelé THETIS.
Il s'agit d'un simulateur conçu avant tout pour aborder les problèmes liés au contexte de la flottille. Il est multi-véhicules hétérogènes puisqu'il permet de simuler par exemple, un scenario dans lequel un AUV (Autonomous Underwater Vehicle) et un ASV (Autonomous Surface Vehicle) interviennent simultanément. Les véhicules peuvent communiquer entre eux au sein de la simulation et les contraintes liées au milieu de propagation (interférences, bande passante, atténuation...) d'une part et à l'utilisation de matériel spécifique (temps de réveil, conflit émission/réception...) d'autre part sont prises en compte. L'architecture du simulateur est ouverte pour faciliter l'intégration et la mise à disposition pour tous, du travail de modélisation des différentes équipes possédant des compétences propres, tout en favorisant la réutilisabilité et la modularité de ces modèles. La capacité du système proposé à réaliser des simulations Hardware-In-The-Loop permet de tester et valider le comportement temporel du contrôleur. Par ailleurs ce simulateur est distribué afin de pouvoir étendre dynamiquement la puissance de calcul nécessitée par l'augmentation du nombre de véhicules et/ou la complexification des modèles, tout en respectant les contraintes temps-réel et le découplage temporel entre la commande et l'évolution des modèles dynamiques.
THETIS est donc un des seuls outils à l'heure actuelle répondant aux contraintes liées au contexte de la simulation de robots marins en flottille. Nous présentons des tests préliminaires mettant en œuvre un AUV de classe Taipan (développée au LIRMM en France) d'une part et un ASV Charlie (développé par l'ISSIA en Italie) d'autre part qui possèdent des architectures de contrôle différentes, et démontrons ainsi la faisabilité et la validité de notre approche.
Gandois, Alvin. "Cοοrdinatiοn d'une flοtte hétérοgène de rοbοts pοur la récοlte d'infοrmatiοn dans un envirοnnement incοnnu". Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMC242.
Testo completoIn this thesis, we study the problem of information gathering in an unknown and partially observable environment with heterogeneous agents. We consider an environment containing a set of interest points, with the objective of coordinating heterogeneous agents in order to gather information on these points. The heterogeneity of the agents can manifest in various ways: multiple agents with different observation capacities, different transport capabilities, varying resources, or a single agent equipped with multiple heterogeneous sensors. We started by proposing a model to gather information with multiple heterogeneous agents in a partially observable yet topologically known environment. This model, which we have named Meta-MDP, is based on Markov decision processes and operates in two stages: first, for each agent and each interest point, we calculate a policy to gather information on that particular point. Then, we compute a policy for allocating interest points to agents in a way that optimizes long-term information gathering. Then, we extended this model to the case where a single agent, equipped with multiple heterogeneous sensors (typically a laser sensor and a camera), operates in an unknown environment with the goal of building a map of the environment while simultaneously gathering information on potential interest points
Jiang, Wei. "Contrôle de la formation et du confinement variable dans le temps et entièrement distribué pour les systèmes multi-agents/ multi-robots". Thesis, Ecole centrale de Lille, 2018. http://www.theses.fr/2018ECLI0016/document.
Testo completoThis thesis deals with the time-varying formation and containment control for linear time-invariant multi-agent systems with heterogeneity considering constant / time-varying input / output delays and matched / mismatched disturbances under directed and fixed communication topology. New formats of time-varying formation shapes for homogeneous and heterogeneous systems are proposed. The controllers, which are designed based on predictive and adaptive techniques with observer technique, are fully distributed and can be applied to large-scale systems. The application on linearized heterogeneous multi mobile robot systems is verified
Mercier, Stéphane. "Contrôle du partage de l'autorité dans un système d'agents hétérogènes". Phd thesis, Ecole nationale superieure de l'aeronautique et de l'espace, 2011. http://tel.archives-ouvertes.fr/tel-00666618.
Testo completoRenaudeau, Brice. "Robotique coopérative aéro-terrestre : Localisation et cartographie hétérogène". Thesis, Limoges, 2019. http://www.theses.fr/2019LIMO0012/document.
Testo completoThis work aims to study the problem of air-ground robotic cooperation for collaborative traversability mapping. The need for a map for navigation and path planning for terrestrial robots is no longer to be proven. The use of air-ground cooperation to create a navigable map for the ground robots has several interests. First, the drone can quickly map an area through its large field of vision and traveling capabilities. Second, the fusion of maps based on these two agents makes it possible to draw the best benefits from both points of views: the coherence of the global aerial view and the accuracy of the local ground view. To answer this problem, we propose a method that relies on the construction of a unified model of hybrid maps and their fusion.The maps are built using the skeleton of the traversability space as a support for graphs also containing local metric and potentialy semantic information of the environment. The maching of aerial and ground maps is done using a point to point correlation based on an appropriate dissimilarity measure. This measure is defined to meet invariance and discriminance criteria. The matching is then used to merge the maps into an augmented traversability map. The merged maps can be used by the ground robot to perform its mission. They also make it possible to deploy information such as GPS coordinates to robots in GPS denied environments. Experiments in virtual and real world environments have been carried out to validate this approach and map out future perspetives
Breloy, Arnaud. "Algorithmes d’estimation et de détection en contexte hétérogène rang faible". Thesis, Université Paris-Saclay (ComUE), 2015. http://www.theses.fr/2015SACLN021/document.
Testo completoOne purpose of array processing is the detection and location of a target in a noisy environment. In most cases (as RADAR or active SONAR), statistical properties of the noise, especially its covariance matrix, have to be estimated using i.i.d. samples. Within this context, several hypotheses are usually made: Gaussian distribution, training data containing only noise, perfect hardware. Nevertheless, it is well known that a Gaussian distribution doesn’t provide a good empirical fit to RADAR clutter data. That’s why noise is now modeled by elliptical process, mainly Spherically Invariant Random Vectors (SIRV). In this new context, the use of the SCM (Sample Covariance Matrix), a classical estimate of the covariance matrix, leads to a loss of performances of detectors/estimators. More efficient estimators have been developed, such as the Fixed Point Estimator and M-estimators.If the noise is modeled as a low-rank clutter plus white Gaussian noise, the total covariance matrix is structured as low rank plus identity. This information can be used in the estimation process to reduce the number of samples required to reach acceptable performance. Moreover, it is possible to estimate the basis vectors of the clutter-plus-noise orthogonal subspace rather than the total covariance matrix of the clutter, which requires less data and is more robust to outliers. The orthogonal projection to the clutter plus noise subspace is usually calculated from an estimatd of the covariance matrix. Nevertheless, the state of art does not provide estimators that are both robust to various distributions and low rank structured.In this Thesis, we therefore develop new estimators that are fitting the considered context, to fill this gap. The contributions are following three axes :- We present a precise statistical model : low rank heterogeneous sources embedded in a white Gaussian noise.We express the maximum likelihood estimator for this context.Since this estimator has no closed form, we develop several algorithms to reach it effitiently.- For the considered context, we develop direct clutter subspace estimators that are not requiring an intermediate Covariance Matrix estimate.- We study the performances of the proposed methods on a Space Time Adaptive Processing for airborne radar application. Tests are performed on both synthetic and real data
Mollaret, Christophe. "Perception multimodale de l'homme pour l'interaction Homme-Robot". Thesis, Toulouse 3, 2015. http://www.theses.fr/2015TOU30225/document.
Testo completoThis work is about human multimodal perception for human-robot interaction (HRI). This work was financed by the RIDDLE ANR Contint project (2012-2015). This project focuses on the development of an assisting robot for the elderly who experience small losses of memory. This project aims at coping with a growing need in human care for elder people living alone. Indeed in France, the population is aging and around 33% of the estimated population will be more than 60 years old by 2060. The goal is therefore to program an interactive robot (with perceptive capabilities), which would be able to learn the relationship between the user and a set of selected objects in their shared environment. In this field, lots of problems remain in terms of : (i) shared human-environment perception, (ii) integration on a robotic platform, and (iii) the validation of some scenarii about usual objects that involve both the robot and the elderly. The aim is to see the robot answer the user's interrogations about ten objects (defined by a preliminary study) with appropriate actions. For example, the robot will indicate the position of an object by moving towards it, grapping it or giving oral indications if it is not reachable. The RIDDLE project was formed by a consortium, with Magellium, the gerontology center of Toulouse, the MINC team from the LAAS-CNRS laboratory and Aldebaran Robotics. The final demonstrations will be led on the Rom´eo platform. This thesis has been co-directed by Fr´ed´eric Lerasle and Isabelle Ferran´e, respectively from the RAP team of LAAS-CNRS and the SAMoVA team of IRIT. Along the project, in partnership with the gerontology center, a robot scenario was determined following three major steps. During the first one -the "Monitoring step"- the robot is far from the user and waits for an intention of interaction. A "Proximal interaction step" is reached when the robot interacts with the user from a close position. Finally, the last step : the "Transition" allows the robot to move to reach the two previous ones. This scenario was built in order to create a not-intrusive proactive robot. This non-intrusiveness is materialized by the "monitoring step". The proactivity is achieved by the creation of a detector of user intention, allowing the robot to understand non-verbal information about the user's will to communicate with it. The scientific contributions of this thesis include various aspects : robotic scenarii, the detector of user intention, a filtering technique based on particle swarm optimization algorithm, and finally a Baysian scheme built to improve the word error rate given distance information. This thesis is divided in four chapters. The first one is about the detector of user intention. The second chapter moves on to the filtering technique. The third chapter will focus on the proximal interaction and the employed techniques, and finally the last chapter will deal with the robotic implementations
Glanon, Philippe Anicet. "Deployment of loop-intensive applications on heterogeneous multiprocessor architectures". Electronic Thesis or Diss., université Paris-Saclay, 2020. http://www.theses.fr/2020UPASG029.
Testo completoCyber-physical systems (CPSs) are distributed computing-intensive systems, that integrate a wide range of software applications and heterogeneous processing resources, each interacting with the other ones through different communication resources to process a large volume of data sensed from physical, chemical or biological processes. An essential issue in the design stage of these systems is to predict the timing behaviour of software applications and to provide performance guarantee to these applications. In order tackle this issue, efficient static scheduling strategies are required to deploy the computations of software applications on the processing architectures. These scheduling strategies should deal with several constraints, which include the loop-carried dependency constraints between the computational programs as well as the resource and communication constraints of the processing architectures intended to execute these programs. Actually, loops being one of the most time-critical parts of many computing-intensive applications, the optimal timing behaviour and performance of the applications depends on the optimal schedule of loops structures enclosed in the computational programs executed by the applications. Therefore, to provide performance guarantee for the applications, the scheduling strategies should efficiently explore and exploit the parallelism embedded in the repetitive execution patterns of loops while ensuring the respect of resource and communications constraints of the processing architectures of CPSs. Scheduling a loop under resource and communication constraints is a complex problem. To solve it efficiently, heuristics are obviously necessary. However, to design efficient heuristics, it is important to characterize the set of optimal solutions for the scheduling problem. An optimal solution for a scheduling problem is a schedule that achieve an optimal performance goal. In this thesis, we tackle the study of resource-constrained and communication-constrained scheduling of loop-intensive applications on heterogeneous multiprocessor architectures with the goal of optimizing throughput performance for the applications. In order to characterize the set of optimal scheduling solutions and to design efficient scheduling heuristics, we use synchronous dataflow (SDF) model of computation to describe the loop structures specified in the computational programs of software applications and we design software pipelined scheduling strategies based on the structural and mathematical properties of the SDF model
Fillatreau, Philippe. "Localisation et modélisation tridimensionnelles pour un robot mobile autonome tout terrain". Phd thesis, Université Paul Sabatier - Toulouse III, 1994. http://tel.archives-ouvertes.fr/tel-00261834.
Testo completoLachat, Elise. "Relevé et consolidation de nuages de points issus de multiples capteurs pour la numérisation 3D du patrimoine". Thesis, Strasbourg, 2019. http://www.theses.fr/2019STRAD012/document.
Testo completoThree dimensional digitization of built heritage is involved in a wide range of applications (documentation, visualization, etc.), and may take advantage of the diversity of measurement techniques available. In order to improve the completeness as well as the quality of deliverables, more and more digitization projects rely on the combination of data coming from different sensors. To this end, the knowledge of sensor performances along with the quality of the measurements they produce is recommended. Then, different solutions can be investigated to integrate heterogeneous point clouds within a same project, from their registration to the modeling steps. A global approach for the simultaneous registration of multiple point clouds is proposed in this work, where the introduction of individual weights for each dataset is foreseen. Moreover, robust estimators are introduced in the registration framework, in order to deal with potential outliers or measurement noise among the data