Letteratura scientifica selezionata sul tema "Reverse osmosis process"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Reverse osmosis process".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Reverse osmosis process"
Mann, J. "Reverse osmosis/ultrafiltration process principles". Chemical Engineering Journal 36, n. 3 (novembre 1987): 196. http://dx.doi.org/10.1016/0300-9467(87)80029-1.
Testo completoOhya, H., K. Yajima e R. Miyashita. "Design of reverse osmosis process". Desalination 63 (gennaio 1987): 119–33. http://dx.doi.org/10.1016/0011-9164(87)90045-2.
Testo completoSalahudeen, Nurudeen. "Process simulation of modelled reverse osmosis for desalination of seawater". Water Practice and Technology 17, n. 1 (21 dicembre 2021): 175–90. http://dx.doi.org/10.2166/wpt.2021.127.
Testo completoTanaka, Yuji, Yohito Ito, Shigehisa Hanada e Tamotsu Kitade. "Environmental Friendly Seawater Reverse Osmosis Process". membrane 40, n. 2 (2015): 86–90. http://dx.doi.org/10.5360/membrane.40.86.
Testo completoKimura, Shoji. "Transport Phenomena in Reverse Osmosis Process." membrane 21, n. 1 (1996): 2–8. http://dx.doi.org/10.5360/membrane.21.2.
Testo completoChong, Tzyy Haur, Siew-Leng Loo e William B. Krantz. "Energy-efficient reverse osmosis desalination process". Journal of Membrane Science 473 (gennaio 2015): 177–88. http://dx.doi.org/10.1016/j.memsci.2014.09.005.
Testo completoMeares, P. "Reverse osmosis/ultra filtration process principles". Chemical Engineering Science 41, n. 9 (1986): 2453–54. http://dx.doi.org/10.1016/0009-2509(86)85104-1.
Testo completoAbdella, Dana L. "Reverse Osmosis Desalination". Marine Technology and SNAME News 31, n. 03 (1 luglio 1994): 195–200. http://dx.doi.org/10.5957/mt1.1994.31.3.195.
Testo completoMohammed, Hiba A., Dawood E. Sachit e Mustafa Al-Furaiji. "APPLICATIONS AND CHALLENGES OF THE REVERSE OSMOSIS MEMBRANE PROCESS: A REVIEW". Journal of Engineering and Sustainable Development 27, n. 5 (1 settembre 2023): 630–46. http://dx.doi.org/10.31272/jeasd.27.5.6.
Testo completoSaavedra, A., G. Bertoni, D. Fajner e G. C. Sarti. "Reverse osmosis treatment of process water streams". Desalination 82, n. 1-3 (agosto 1991): 249–66. http://dx.doi.org/10.1016/0011-9164(91)85192-w.
Testo completoTesi sul tema "Reverse osmosis process"
Al, Shaalan Hakem. "Artifical neural network modelling of reverse osmosis process". Thesis, Loughborough University, 2012. https://dspace.lboro.ac.uk/2134/9516.
Testo completoMane, Pranay P. "RO Process Optimization Based on Deterministic Process Model Coupled with Stochastic Cost Model". Thesis, Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/14486.
Testo completoChong, Brian S. H. "The removal of pesticides and heavy metals by reverse osmosis". Thesis, Virginia Tech, 1990. http://hdl.handle.net/10919/42126.
Testo completoMiyashita, Yu. "Removal of N-nitrosamine by Nanofiltration and Reverse Osmosis Membranes". Thesis, Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/14490.
Testo completoSchutte, Christiaan Frederik. "The feasibility of reverse osmosis as a water reclamation process with special reference to the rejection of organic compounds". Doctoral thesis, University of Cape Town, 1986. http://hdl.handle.net/11427/22470.
Testo completoOtto, Dietmar Norman. "The effect of forward flushing, with permeate, on gypsum scale formation during reverse osmosis treatment of CaSO4-rich water in the absence of anti-scalant". Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/95887.
Testo completoENGLISH ABSTRACT: When desalinating brackish water by reverse osmosis (RO) or other techniques, high overall water recoveries are essential to minimize brine production and the associated disposal costs thereof. As the overall water recovery increases, concentrations of sparingly soluble salts (e.g. barium sulphate, calcium sulphate) reach levels above saturation, especially near the membrane surface, drastically increasing the scaling propensity. Antiscalants are typically dosed into the feed water to prevent such scaling during RO desalination. However, the carry-over of antiscalant into the concentrate stream can complicate subsequent salt precipitation processes that may be used to increase overall water recovery. These precipitation techniques are sometimes used to reduce the levels of super-saturation in the RO concentrate prior to a subsequent RO desalination step. The purpose of this study was to assess the feasibility of reducing calcium sulphate scaling on RO membranes, by using periodic permeate flushing when feeding a lab-scale RO unit with a supersaturated calcium sulphate solution in the absence of anti-scalant. The overall water recovery was increased by recycling the concentrate, after an intermediate de-supersaturation step. This simulated a multiple-stage RO system, typical of processes used in high-recovery acid mine drainage (AMD) treatment plants. De-supersaturation of the concentrate intermediate was achieved with direct seeded gypsum precipitation, in the absence of any antiscalant. On the membrane surface inside the membrane unit, calcium sulphate concentrations greatly exceeded saturation levels – a combined consequence of the normal concentration process and the well-known surface-based concentration polarisation phenomenon. Therefore, periodic forward-flushing of the supersaturated solution from the membrane unit was performed with permeate. In theory, the periodic flushing removes the highly concentrated layer at the membrane surface during every flush, before scaling can occur. Various flushing regimes were evaluated to assess the effectiveness of the process. A lab-scale desalination unit with a 0.106 m2 flat sheet polyamide RO membrane was designed and constructed. The unit could operate at a feed rate of 12-14 L/h and at permeate fluxes of 12-24 LMH. Super-saturated feed solutions were prepared by mixing sodium sulphate and calcium chloride dihydrate salts with demineralised water, with an initial salinity of ± 5300 mg/L TDS, corresponding to a gypsum saturation index (SIg) of 1.2 for most experiments. The total production time, net permeate production and flux decline were used to compare the flushing efficiency in different experimental runs. Initial tests showed that scaling could be prevented (when operating the unit in full recycle mode, i.e. where both concentrate and permeate were recycled to feed), at flushing frequencies between 12 and 2.4 h-1, when the membrane feed and concentrate were slightly under-saturated (SIg = 0.9) and slightly super-saturated (SIg = 1.1) respectively. However, when switching the same system to non-flushing mode after 24 hours of operation, membrane scaling occurred within 2-3 hours, as indicated by a strong decline in flux. However, when operating the system in concentrate recycle mode (i.e. permeate is withdrawn) with super-saturated feed solutions (e.g. SIg = 1.2), and thus a notably more super-saturated solution in the membrane concentrate, scaling could not be prevented (albeit delayed for some time) with intermittent permeate flushing. A fractional 25-1 factorial design was used to determine which factors had the most significant effect on total production time and permeate production rate, testing five factors: 1) flushing frequency, 2) flushing volume, 3) permeate soak time, 4) permeate flux and 5) instantaneous recovery. The ANOVA analysis showed that total production times were, not surprisingly, primarily affected by the permeate flux, where operation at 24 LMH resulted in a lower net permeate production between 3.0 - 4.2 L, compared to 7.6 - 9.7 L at 12 LMH. Higher permeate fluxes clearly resulted in higher levels of concentration polarisation at the membrane surface, thus increasing the propensity for membrane scaling. Flushing frequency and instantaneous recovery also affected the net permeate production, where 6 h-1 and 10 % were the optimal values respectively within the range of test conditions. The lowest permeate production rate resulted in the highest net permeate volume production (i.e. also longest total production time), confirmed by a least squares regression. In summary: This study showed that periodic permeate flushing could delay the membrane scaling process. However, it failed to prevent membrane scaling completely when operating the system with supersaturated calcium sulphate solutions in the absence of antiscalants. The flushing technique effectively delayed the onset of precipitation, but scaling eventually occurred if the lab-scale RO system was operated in concentrate recycle mode with oversaturated feed solutions (SIg = 1.2). Additional experiments at different cross-flow velocities during permeate flushing, while using an optimised RO test cell flow channel design, are recommended for future studies.
AFRIKAANSE OPSOMMING: Gedurende die ontsouting van brakwater deur tegnieke soos tru-osmose (TO), is ʼn maksimum herwinning van water noodsaaklik om die produksie, en die gepaardgaande kostes van verwydering, van die sout/brak neweproduk te minimeer. Soos die herwinning van water verhoog, so ook verhoog die konsentrasie van moeilik-oplosbare soute (soos bariumsulfaat, kalsiumsulfaat) in die sout konsentraat stroom, totdat die soute uiteindelik superversadiging bereik. Hierdie superversadiging gebeur veral naby die membraanoppervlak, waar dit lei tot ʼn verhoogde kans van presipitasie en skaalvorming. Om dit te voorkom word die voerwater na ʼn TO stelsel tipies gedoseer met antiskaalmiddels. Hierdie antiskaalmiddels verlaat die stelsel saam met die konsentraat, waar hulle gevolglike die presipitasie van soute bemoeilik. Presipitasie van soute uit die konsentraat kan tipies gebruik word om die vlak van superversadiging in die konsentraat te verlaag, waarna verdere TO behandeling gebruik word om selfs ʼn hoër algehele waterherwinning te bewerkstellig. Die doel van hierdie studie was om die vatbaarheid van die vermindering van kalsiumsulfaat (gips) skaalvorming in die afwesigheid van antiskaalmiddels op TO membrane te toets. Dit is bewerkstellig deur ʼn laboratoriumskaal TO eenheid te voer met ʼn superversadigde kalsiumsulfaat oplossing en die membraan periodies met skoon produkwater (permeaat) te was. Die algehele waterherwinning is verhoog deur met ʼn tussenstap die versadigingsvlak van gips in die konsentraat te verlaag, waarna dit hersirkuleer is na die voertenk. Sodoende is ʼn multi-stadium TO stelsel nageboots, soos dit tipies in hoë herwinningsaanlegte, soos met die herwinning van suur mynwater (E: acid mine drainage, AMD), gebruik word. ʼn Verlaging in superversadiging van die konsentraat in die tussenstap is behaal deur die konsentraat direk aan gipskristalle bloot te stel om presipitasie te bewerkstellig in die afwesigheid van enige antiskaalmiddels. Gedurende eksperimente het die soutkonsentrasie op die membraanoppervlak in die TO eenheid superversadigingsvlakke vêr oorskry, as gevolg van die natuurlike konsentrasie proses en die bekende konsentrasie polarisasie oppervlaksverskynsel. Om hierdie superversadiging teen te werk is periodiese saamstroom spoeling van die membraan met skoon produkwater uitgevoer. In teorie het die periodiese spoeling die hoogs gekonsentreerde oplossing van die membraan oppervlak verwyder voor skaalvorming kan plaasvind. Verskillende spoelpatrone is ondersoek om die doeltreffendheid van die spoeling te bepaal. Om die eksperimente uit te voer is ʼn laboratoriumskaal ontsoutingsaanleg met ʼn maklik verwyderbare 0.106 m2 plat-vel poli-amied TO membraan ontwerp en gebou. Die aanleg kan vloeistof voertempo’s tussen 12-24 L/h hanteer en skoon produkwater teen 12-24 LHM lewer. Die superversadigde voer oplossings, soos gebruik in die meerderheid van die eksperimentes is voorberei deur natriumsulfaat en kalsiumchloried-dihidraat soute te meng in gedemineraliseerde water, tot ʼn soutgehalte van ± 5300 mg/L TDS bereik is. Hierdie soutgehalte stem ooreen met ʼn gips versadigingsindeks (E: gypsum saturation index, SIg) van 1.2. Die skoon produkwater totale produksietyd en netto produksie, asook die membraan vloed afname, is gebruik as veranderlikes om die spoel doeltreffendheid tussen eksperimentele lopies te vergelyk. Aanvanklike toetse het getoon dat skalering voorkom is by effens onderversadigde (SIg = 0.9) en effens superversadigde (SIg = 1.1) voer oplossings met die onderskeie spoel frekwensies van 12 en 2.4 h-1, (terwyl die aanleg in algehele hersirkulasie bedryf is, m.a.w. wanneer beide die konsentraat en produkwater gedurig na die voertenk hersirkuleer word). ʼn Effens-superversadigde eksperiment is ook sonder spoeling uitgevoer vir 24 uur. In hierdie geval het skaalvorming binne twee tot drie uur gebeur, soos bevestig deur ʼn skerp afname in die membraan vloed. Skaalvorming kon nie verhoed word terwyl die aanleg bedryf word met superversadigde (SIg = 1.2) voeroplossings en slegs konsentraat hersirkulasie nie (m.a.w. skoon produkwater word opgevang), alhoewel skaalvorming vertraag kon word. Hierdie operasie het tot beduidend meer gekonsentreerde oplossings in die membraan gelei. Om te bepaal watter faktore die grootste invloed op totale produksietyd en netto produksie van skoon produkwater het, is ʼn fraksionele faktoriaalontwerp van 25-1 uitgelê wat vyf faktore toets, naamlik: 1) spoel frekwensie, 2) spoel volume, 3) skoon produkwater weektyd, 4) membraanvloed en 5) oombliklike herwinning. ʼn AVOVA analise het getoon dat totale produksietyd hoofsaaklik deur membraanvloed beïnvloed is, soos verwag kan word. Dit word gestaaf deurdat die aanleg, bedryf teen 24 LMH, slegs 3 - 4.2 L netto produkwater gelewer het, teenoor 7.6 - 9.7 L by 12 LMH. Hoër membraan vloedtempo’s het tot hoër vlakke van konsentrasie polarisasie op die membraanoppervlak gelei, wat ʼn groter neiging tot skaalvorming tot gevolg gehad het. Spoelfrekwensie en oombliklike herwinning het ʼn invloed op die netto produksie van skoon produkwater gehad, met 6 h-1 en 10 % as die onderskeie optimale waardes. ʼn Kleinstekwadraat regressie het aangedui dat die laagste produksietempo van skoon produkwater die hoogste netto produksie van skoon produkwater gelewer het, (asook die langste produksietyd). In opsomming: Hierdie studie het getoon dat gereelde spoeling met skoon produkwater die membraan skaalproses kan vertraag. Gedurende bedryf met superversadigde kalsiumsulfaat oplossings sonder enige antiskaalmiddels is daar gevind dat skaalvorming nie geheel en al vermy kon word nie. Die spoeltegniek, soos gebruik in hierdie studie, het die aanvang van skaalvorming in die laboratorium skaal TO eenheid vertraag, maar bedryf met konsentraat hersirkulasie en superversadigde oplossings (SIg = 1.2) het steeds skaal gevorm. Bykomende eksperimente teen verskeie kruisvloei snelhede gedurende die spoel stap word aanbeveel vir toekomstige studies.
Gorman, Craig T. "Initial measurements and test system development for evaluation of a novel, hybrid reverse osmosis-electrodialysis process". Diss., Connect to online resource, 2005. http://wwwlib.umi.com/cr/colorado/fullcit?p1428735.
Testo completoJeffery, Samantha. "In-Plant and Distribution System Corrosion Control for Reverse Osmosis, Nanofiltration, and Anion Exchange Process Blends". Master's thesis, University of Central Florida, 2013. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5951.
Testo completoM.S.Env.E.
Masters
Civil, Environmental, and Construction Engineering
Engineering and Computer Science
Environmental Engineering
Al-Obaidi, Mudhar A. A. R. "Modelling, Simulation, and Optimisation of Reverse Osmosis Process with Application in Wastewater Treatment and Food Processing". Thesis, University of Bradford, 2018. http://hdl.handle.net/10454/17345.
Testo completoMinistry of High Education and Scientific Research of Iraq
Takaidza, Samkeliso. "The effects of biofouling on a reverse osmosis membrane purification system at Sasol, Sasolburg". Thesis, Vaal University of Technology, 2011. http://hdl.handle.net/10352/452.
Testo completoReverse osmosis (RO) membranes are widely used in water purification. The presence of biofilms in water and industrial water purification systems is prevalent. As a result, biofouling which is a biofilm problem causes adverse effects on reverse osmosis process, which include flux decline, shorter membrane lifetime and an increase in energy consumption The effect of biofouling on RO membranes was investigated at a water treatment facility at Sasol, Sasolburg by investigating the quality of water purified by the RO system and the extent of fouling that is attributed to biofouling. Chemical and microbiological data was averaged based on the results obtained from water analysis and samples from a fouled membrane. Bacteriological plate counts ranged between log 1.5 to 4 cfu/ml in water samples and log 3.9 to 4.5 cfu/cm2 on biofilm from the membrane surface. Water analysis indicated a high conductivity of 121 µS/cm in the feed and 81 ppm of the TDS, whereas in the permeate conductivity was found to be around 6 µS/cm and 3.8 ppm of the TDS. This indicated that components present in the feed were retained by the membrane. This was supported by membrane autopsy which showed that the bacteria and elements found in the feedwater were also present on the membrane surface, hence contributing to fouling. An average of 33% of cellular ATP was measured on the biofilm from membrane sample, showing that the fouling bacteria are metabolically active in situ. The results clearly indicated that an important biological activity occurred at the membrane surface.
Libri sul tema "Reverse osmosis process"
Center for Environmental Research Information (U.S.), a cura di. Reverse osmosis process. Cincinnati, OH: Center for Environmental Research Information, National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, 1996.
Cerca il testo completoSourirajan, S. Reverse osmosis: Ultrafiltration process principles. Ottawa, [Ontario]: National Research Council Canada, 1985.
Cerca il testo completo1936-, Matsuura Takeshi, e National Research Council Canada, a cura di. Reverse osmosis, ultrafiltration process principles. Ottawa, Canada: National Research Council Canada, 1985.
Cerca il testo completoSourirajan, S. Reverse osmosis/ultrafiltration process principles. Ottawa, Canada: National Research Council Canada, 1985.
Cerca il testo completoUnited States. Environmental Protection Agency. Office of Research and Development., Center for Environmental Research Information (U.S.) e National Risk Management Research Laboratory (U.S.), a cura di. Capsule report: Reverse osmosis process. Cincinnati, Ohio: Center for Environmental Research Information, National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, 1996.
Cerca il testo completoBergman, Robert. Reverse osmosis and nanofiltration. 2a ed. Denver, CO: American Water Works Association, 2007.
Cerca il testo completoLtd, CH2M Hill Engineering. Reverse osmosis, pilot program at Dare Candy. [Toronto]: Queen's Printer for Ontario, 1992.
Cerca il testo completo1947-, Parekh Bipin S., a cura di. Reverse osmosis technology: Applications for high-purity-water production. New York: M. Dekker, 1988.
Cerca il testo completoLawler, Desmond F. Enhanced reverse osmosis systems: Intermediate treatment to improve recovery. Denver, Colo: Water Research Foundation, 2011.
Cerca il testo completoEisenhauer, Roy J. Plugging factor monitor membrane quality acceptance: Flow rate test. Denver, Colo: Applied Sciences Branch, Research and Laboratory Services Division, Denver Office, U.S. Dept. of the Interior, Bureau of Reclamation, 1991.
Cerca il testo completoCapitoli di libri sul tema "Reverse osmosis process"
Wilf, Mark. "The Reverse Osmosis Process". In Desalination, 155–204. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118904855.ch3.
Testo completoLudwig, Heinz. "Reverse Osmosis Membrane System: Core Process of SWRO". In Reverse Osmosis Seawater Desalination Volume 1, 315–739. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-81931-6_5.
Testo completoLudwig, Heinz. "Seawater Reverse Osmosis (SWRO) Plant: General System Configuration, Basic Design Parameters and Conditions, and Overall Planning Process". In Reverse Osmosis Seawater Desalination Volume 1, 205–314. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-81931-6_4.
Testo completoRautenbach, R., e I. Janisch. "Reverse Osmosis for the Separation of Organics from Aqueous Solutions". In Process Technologies for Water Treatment, 25–41. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4684-8556-1_3.
Testo completoMohammed, Moumni, e Massour El Aoud Mohamed. "Control of Reverse Osmosis Process at a Brackish Water Desalination Station". In The Proceedings of the International Conference on Electrical Systems & Automation, 143–54. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-0039-6_12.
Testo completoHemanth Kumar, M. B., e B. Saravanan. "Compressed Air Energy Storage Driven by Wind Power Plant for Water Desalination Through Reverse Osmosis Process". In Advances in Intelligent Systems and Computing, 145–54. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0035-0_12.
Testo completoGadge, Padmanabh Arun, e Shubhangi Gurway. "Improving reverse osmosis process in zero liquid discharge using Taguchi optimization method in alcohol production industry". In Recent Advances in Material, Manufacturing, and Machine Learning, 777–84. London: CRC Press, 2024. http://dx.doi.org/10.1201/9781003450252-94.
Testo completoZocchi, Roberto, Gianluca Brevigliero, Federico Arlati, Alma Rodriquens, Mariachiara D’Aniello e Khadija Ajmi. "Advanced Process for PFAS Removal from a Leachate Landfill: On-site Plant Based on Reverse Osmosis and Evaporation Technology". In Advances in Science, Technology & Innovation, 231–35. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-00808-5_53.
Testo completoXue, Xingfu. "Engineering practice study on the treatment of domestic garbage leachate based on two-stage disc tube reverse osmosis combined process". In Advances in Food Safety and Environmental Engineering, 99–106. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003318514-17.
Testo completoWeber, B., e F. Holz. "Landfill Leachate Treatment by Reverse Osmosis". In Effective Industrial Membrane Processes: Benefits and Opportunities, 143–54. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3682-2_10.
Testo completoAtti di convegni sul tema "Reverse osmosis process"
Gulied, Mona Hersi, Ahmed Al Nouss, Tasneem ElMakki, Fathima Sifani Zavahir e Dong Suk han. "Feasibility and Cost Optimization study of Osmotic Assisted Reverse Osmosis Process for Brine Management". In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2020. http://dx.doi.org/10.29117/quarfe.2020.0031.
Testo completoBartman, Alex R., Charles W. McFall, Panagiotis D. Christofides e Yoram Cohen. "Model predictive control of feed flow reversal in a reverse osmosis desalination process". In 2009 American Control Conference. IEEE, 2009. http://dx.doi.org/10.1109/acc.2009.5160150.
Testo completoMaure, Osniman, e Sudi Mungkasi. "On Modelling of Water Distillation in a Reverse Osmosis Process". In Proceedings of the 2nd International Conference of Science and Technology for the Internet of Things, ICSTI 2019, September 3rd 2019, Yogyakarta, Indonesia. EAI, 2020. http://dx.doi.org/10.4108/eai.20-9-2019.2292098.
Testo completoUsta, Mustafa, Ali E. Anqi, Michael Morabito, Alaa Hakim, Mohammed Alrehili e Alparslan Oztekin. "Computational Study of Reverse Osmosis Desalination Process: Hollow Fiber Module". In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-70884.
Testo completoMcFall, Charles W., Alex Bartman, Panagiotis D. Christofides e Yoram Cohen. "Control of a reverse osmosis desalination process at high recovery". In 2008 American Control Conference (ACC '08). IEEE, 2008. http://dx.doi.org/10.1109/acc.2008.4586825.
Testo completoGolabi, Arash, Abdelkarim Erradi, Hazim Qiblawey, Ashraf Tantawy, Ahmed Bensaid e Khaled Shaban. "Reverse osmosis desalination process modeling and simulation with membrane fouling". In INTERNATIONAL CONFERENCE ON ELECTRONICS, ENGINEERING PHYSICS, AND EARTH SCIENCE. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0200360.
Testo completoLee, Sangho, e Richard M. Lueptow. "Space Mission Wastewater Recovery System Using Rotating Reverse Osmosis: Process Simulation". In International Conference On Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2002. http://dx.doi.org/10.4271/2002-01-2528.
Testo completoMOHAMMED, MOUMNI, e MOHAMED MASSOUR EL AOUD. "Modeling of reverse osmosis process at a brackish water desalination station". In 2021 7th International Conference on Optimization and Applications (ICOA). IEEE, 2021. http://dx.doi.org/10.1109/icoa51614.2021.9442632.
Testo completoNasib, Amira Mohd, Nuratiqah Baharudin, Nora Jullok, Syahmie Rasidi e Juhana Jaafar. "Fabrication of biodegradable Polylactic Acid (PLA) membrane for reverse osmosis process". In THE PROCEEDING OF THE 1ST INTERNATIONAL CONFERENCE OF CHEMICAL SCIENCE, ENGINEERING AND TECHNOLOGY. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0115854.
Testo completoHabib, Abdulelah, Vahraz Zamani e Jan Kleissl. "Solar Desalination System Model for Sizing of Photovoltaic Reverse Osmosis (PVRO)". In ASME 2015 Power Conference collocated with the ASME 2015 9th International Conference on Energy Sustainability, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/power2015-49386.
Testo completoRapporti di organizzazioni sul tema "Reverse osmosis process"
Wang, Hua. Membrane Bioreactor/Ultra Low Energy Reverse Osmosis Membrane Process for Forward Operating Base Wastewater Reuse. Fort Belvoir, VA: Defense Technical Information Center, agosto 2014. http://dx.doi.org/10.21236/ada619412.
Testo completoKalman, Joseph, e Maryam Haddad. Wastewater-derived Ammonia for a Green Transportation Fuel. Mineta Transportation Institute, luglio 2022. http://dx.doi.org/10.31979/mti.2021.2041.
Testo completoKalman, Joseph, e Maryam Haddad. Wastewater-derived Ammonia for a Green Transportation Fuel. Mineta Transportation Institute, luglio 2022. http://dx.doi.org/10.31979/mti.2022.2041.
Testo completoHusson, Scott M., Viatcheslav Freger e Moshe Herzberg. Antimicrobial and fouling-resistant membranes for treatment of agricultural and municipal wastewater. United States Department of Agriculture, gennaio 2013. http://dx.doi.org/10.32747/2013.7598151.bard.
Testo completo