Letteratura scientifica selezionata sul tema "Relativistic intensity"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Relativistic intensity".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Articoli di riviste sul tema "Relativistic intensity":

1

Liesfeld, Ben, Jens Bernhardt, Kay-Uwe Amthor, Heinrich Schwoerer e Roland Sauerbrey. "Single-shot autocorrelation at relativistic intensity". Applied Physics Letters 86, n. 16 (18 aprile 2005): 161107. http://dx.doi.org/10.1063/1.1905779.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Chang, Yifan, Chang Wang, Yubo Wang, Zhaonan Long, Zirui Zeng e Youwei Tian. "Collimation and monochromaticity of γ-rays generated by high-energy electron colliding with tightly focused circularly polarized laser with varied intensities". Laser Physics Letters 19, n. 6 (20 aprile 2022): 065301. http://dx.doi.org/10.1088/1612-202x/ac6614.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Abstract The collision of high-energy electron and laser pulses produces nonlinear inverse Thomson scattering, which can generate γ-rays. We study the effect of laser intensity on the energy angular distribution and spectrum of γ-ray radiation in tightly focused pulses. The γ-rays at non-relativistic intensity have good collimation and monochromaticity, and the radiation energy increases with the laser intensity. The ‘jumping point’ phenomenon of radiation energy variation under relativistic intensity and the ‘black hole’ of energy angular distribution were discovered. As the laser intensity increases, there is a red shift in the radiative harmonic spectrum. And at relativistic intensity, supercontinuum (tunable) γ-rays can be obtained. These findings help us use NITS for optical research.
3

Клименко, Владимир, e Vladimir Klimenko. "Sky-distribution of intensity of synchrotron radio emission of relativistic electrons trapped in Earth’s magnetic field". Solar-Terrestrial Physics 3, n. 4 (29 dicembre 2017): 32–43. http://dx.doi.org/10.12737/stp-34201704.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
This paper presents the calculations of synchrotron radio emission intensity from Van Allen belts with Gaussian space distribution of electron density across L-shells of a dipole magnetic field, and with Maxwell’s relativistic electron energy distribution. The results of these calculations come to a good agreement with measurements of the synchrotron emission intensity of the artificial radiation belt’s electrons during the Starfish nuclear test. We have obtained two-dimensional distributions of radio brightness in azimuth — zenith angle coordinates for an observer on Earth’s surface. The westside and eastside intensity maxima exceed several times the maximum level of emission in the meridian plane. We have also constructed two-dimensional distributions of the radio emission intensity in decibels related to the background galactic radio noise level. Isotropic fluxes of relativistic electrons (E ~ 1 MeV) should be more than 107 cm–2s–1 for the synchrotron emission intensity in the meridian plane to exceed the cosmic noise level by 0.1 dB (riometer sensitivity threshold).
4

Friou, A., E. Lefebvre e L. Gremillet. "Channeling dynamics of relativistic-intensity laser pulses". Physics of Plasmas 19, n. 2 (febbraio 2012): 022704. http://dx.doi.org/10.1063/1.3680613.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Lee, P. H. Y. "On relativistic self focusing". Laser and Particle Beams 5, n. 1 (febbraio 1987): 15–25. http://dx.doi.org/10.1017/s0263034600002457.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Ponderomotive force initiated laser self focusing can be enhanced by relativistic electron motion in a laser plasma. We derive the nonlinear refractive index due to relativistic effects and find that relativistic self focusing becomes important for a 0·25 μm laser when the laser intensity exceeds 5 × 1018 W/cm2.
6

Jolicoeur, Sheean, Roy Maartens, Eline M. De Weerd, Obinna Umeh, Chris Clarkson e Stefano Camera. "Detecting the relativistic bispectrum in 21cm intensity maps". Journal of Cosmology and Astroparticle Physics 2021, n. 06 (1 giugno 2021): 039. http://dx.doi.org/10.1088/1475-7516/2021/06/039.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Willingale, L., P. M. Nilson, C. Zulick, H. Chen, R. S. Craxton, J. Cobble, A. Maksimchuk et al. "Relativistic intensity laser interactions with low-density plasmas". Journal of Physics: Conference Series 688 (marzo 2016): 012126. http://dx.doi.org/10.1088/1742-6596/688/1/012126.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Marques, J. P., F. Parente e P. Indelicato. "Relativistic MCDF calculation of Kβ/Kα intensity ratios". Journal of Physics B: Atomic, Molecular and Optical Physics 34, n. 17 (21 agosto 2001): 3487–91. http://dx.doi.org/10.1088/0953-4075/34/17/308.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Leshchenko, V. E., V. A. Vasiliev, N. L. Kvashnin e E. V. Pestryakov. "Coherent combining of relativistic-intensity femtosecond laser pulses". Applied Physics B 118, n. 4 (15 febbraio 2015): 511–16. http://dx.doi.org/10.1007/s00340-015-6047-7.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Douma, E., C. J. Rodger, L. W. Blum, T. P. O'Brien, M. A. Clilverd e J. B. Blake. "Characteristics of Relativistic Microburst Intensity From SAMPEX Observations". Journal of Geophysical Research: Space Physics 124, n. 7 (luglio 2019): 5627–40. http://dx.doi.org/10.1029/2019ja026757.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Tesi sul tema "Relativistic intensity":

1

Kiefer, Daniel. "Relativistic electron mirrors from high intensity laser nanofoil interactions". Diss., lmu, 2012. http://nbn-resolving.de/urn:nbn:de:bvb:19-153796.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Kjellsson, Lindblom Tor. "Relativistic light-matter interaction". Doctoral thesis, Stockholms universitet, Fysikum, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-147749.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
During the past decades, the development of laser technology has produced pulses with increasingly higher peak intensities. These can now be made such that their strength rivals, and even exceeds, the atomic potential at the typical distance of an electron from the nucleus. To understand the induced dynamics, one can not rely on perturbative methods and must instead try to get as close to the full machinery of quantum mechanics as practically possible. With increasing field strength, many exotic interactions such as magnetic, relativistic and higher order electric effects may start to play a significant role. To keep a problem tractable, only those effects that play a non-negligible role should be accounted for. In order to do this, a clear notion of their relative importance as a function of the pulse properties is needed.  In this thesis I study the interaction between atomic hydrogen and super-intense laser pulses, with the specific aim to contribute to the knowledge of the relative importance of different effects. I solve the time-dependent Schrödinger and Dirac equations, and compare the results to reveal relativistic effects. High order electromagnetic multipole effects are accounted for by including spatial variation in the laser pulse. The interaction is first described using minimal coupling. The spatial part of the pulse is accounted for by a series expansion of the vector potential and convergence with respect to the number of expansion terms is carefully checked. A significantly higher demand on the spatial description is found in the relativistic case, and its origin is explained. As a response to this demanding convergence behavior, an alternative interaction form for the relativistic case has been developed and presented. As a guide mark for relativistic effects, I use the classical concept of quiver velocity, vquiv, which is the peak velocity of a free electron in the polarization direction of a monochromatic electromagnetic plane wave that interacts with the electron. Relativistic effects are expected when vquiv reaches a substantial fraction of the speed of light c, and in this thesis I consider cases up to vquiv=0.19c. For the present cases, relativistic effects are found to emerge around vquiv=0.16c .
3

Kiefer, Daniel [Verfasser], e Jörg [Akademischer Betreuer] Schreiber. "Relativistic electron mirrors from high intensity laser nanofoil interactions / Daniel Kiefer. Betreuer: Jörg Schreiber". München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2012. http://d-nb.info/1032131314/34.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Zaim, Neïl. "Modeling electron acceleration driven by relativistic intensity few-cycle laser pulses on overdense plasmas". Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLX089.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Nous étudions dans cette thèse théorique et numérique l'accélération d'électrons lors de l'interaction entre une impulsion laser d'intensité relativiste et un plasma surdense. Cette interaction est très sensible au profil de densité sur la face avant du plasma et deux régimes différents, correspondant à deux thématiques de recherche développées dans cette thèse, peuvent être considérés.Premièrement, pour des interfaces plasma-vide très abruptes, les mécanismes menant à l'émission d'électrons sont bien compris. Les électrons gagnent en particulier une grande quantité d'énergie lors de leur interaction dans le vide avec l'impulsion laser réfléchie. Nous proposons d'optimiser cette accélération en utilisant des faisceaux polarisés radialement, qui sont caractérisés par la présence d'un fort champ longitudinal, capable d'accélérer directement les électrons dans la direction de propagation du laser. Nous montrons que les plasmas surdenses conduisent à une accélération plus efficace que les autres méthodes existantes pour injecter des électrons dans une impulsion polarisée radialement. Ce résultat a été confirmé par des expériences effectuées récemment au CEA Saclay, au cours desquelles la possibilité d'accélérer des électrons dans la direction longitudinale, menant ce faisant à une diminution de la divergence angulaire du faisceau d'électrons, a été démontrée.Deuxièmement, pour des gradients de densité plasma plus grands, l'interaction n'est pas aussi bien comprise. Nous analysons des résultats expérimentaux obtenus récemment au LOA avec des impulsions de quelques cycles optiques et nous montrons que les électrons sont accélérés par une onde de sillage laser formée dans la partie quasi-critique du plasma. Ce processus ne se produit qu'avec des impulsions de quelques cycles optiques, en accord avec la condition de résonance, et se distingue par la rotation des ondes plasmas causée par le gradient de densité
This theoretical and numerical thesis is devoted to electron acceleration from the interaction between a relativistic intensity laser pulse and an overdense plasma. This interaction is very sensitive to the density profile at the plasma front surface and two different regimes, which correspond to two distinct lines of research investigated in this thesis, can be considered.First, for sharp plasma-vacuum interfaces, the mechanisms responsible for electron emission are well understood. The electrons receive in particular a large energy gain from their interaction in vacuum with the reflected laser. We propose to optimize the acceleration by using radially polarized beams, which exhibit a strong longitudinal electric field that can directly accelerate electrons in the laser propagation direction. We show that overdense plasmas lead to more efficient acceleration than other existing methods for injecting electrons into a radially polarized pulse. This result was confirmed by recent experiments performed at CEA Saclay, in which electron acceleration in the longitudinal direction, leading to a decrease in the electron beam angular spread, is demonstrated.Secondly, for larger plasma gradient scale lengths, the interaction is not as well understood. We analyze recent experiments performed in this regime at LOA with few-cycle pulses and find that electrons are accelerated by a laser wakefield formed in the near-critical part of the plasma. This process can only be driven by few-cycle pulses, by virtue of the resonant condition, and is characterized by the rotation of the plasma waves induced by the density gradient
5

Coury, Mireille. "Generation and transport of high-current relativistic electron beams in high intensity laser-solid interactions". Thesis, University of Strathclyde, 2013. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=20410.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
In this thesis, the generation and transport of ultra-high intensity laser-driven relativistic electron beams in overdense plasma is investigated experimentally and numerically. The fast electron beam is experimentally diagnosed by means of a 2D Cu Ka imager and the TNSA-generated proton beam. Analytical models together with a 3D hybrid-PIC code are employed to simulate the beam properties in solids. The effects of the self-generated fields on the fast electron beam transport, the effect of the preplasma density scale length on the laser energy coupling to fast electrons and the influence of the laser spot size on the fast electron beam generation and transport, and on the subsequent proton beam, are reported. Fast electron injection and transport in metal foils irradiated at laser intensity up to 4 x 10²⁰ W/cm², is investigated . The beam transport is simulated over a wide range of beam source conditions and with or without inclusion of selfgenerated magnetic fields . The resulting hot electron beam properties are used in rear-surface plasma expansion calculations to compare with measurements of the beam of accelerated protons. An injection half-angle of ~ 50° - 70° is inferred, which is larger than that derived from previous experiments under similar conditions. The influence of laser spot size on laser energy coupling to electrons, and subsequently to the TNSA-generated protons, in foil targets is reported. Proton acceleration is characterized for laser intensities ranging from 2 x 10¹⁸ - 6 x 10²⁰ W/cm², by variation of the laser energy for a fixed spot size, and by variation of the spot size for a fixed energy. At a given laser pulse intensity, the maximum proton energy is higher under defocus illumination compared to tight focus. The results are explained in terms of higher laser pulse energy and geometrical changes to the hot electron injection. The laser-to-electron energy conversion efficiency is investigated in metal foil s over a wide range of preplasma density scale lengths. A hybrid-PIC code is employed to model the fast electron beam transport in the solid, for a given hot electron source. The resulting fast electron density is used to infer the maximum proton energy for comparison with experimental results. It is shown, in agreement with previous published work, that some preplasma density scale length leads to an enhancement of the energy coupling efficiency of laser light to fast electrons.
6

Wilz, Mackenzie Charles. "Focused investigations of relativistic electron burst intensity, range, and dynamics space weather mission global positioning system". Montana State University, 2011. http://etd.lib.montana.edu/etd/2011/wilz/WilzM0511.pdf.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
The FIREBIRD mission (Focused Investigations of Relativistic Electron Burst Intensity, Range, and Dynamics) is a low earth orbit, space weather, CubeSat mission which is comprised of a two satellite constellation. This constellation is responsible for the measurement of relativistic electron microbursts with very fine spatial and temporal resolution. To achieve the spatial and temporal requirements of the mission, a global positioning system (GPS), for the purpose of navigation position and timing, is to be implemented on both satellites within the constellation. The integration and testing of this subsystem is integral to the mission's success. The GPS hardware must be capable of fulfilling the requirements of the mission in order for the science data to be interpreted reliably. This means that the GPS hardware must not only be accurate but precise as well. Also, a driver must be implemented in software in order for this data from the GPS hardware to be received, interpreted, and stored by the command and data handling subsystem.
7

Debayle, Arnaud. "Theoretical study of Ultra High Intensity laser-produced high-current relativistic electron beam transport through solid targets". Thesis, Bordeaux 1, 2008. http://www.theses.fr/2008BOR13708/document.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Cette thèse porte sur l’étude théorique du transport d’un faisceau intense d’électrons relativistes dans une cible solide. Dans la première partie nous présentons les interprétations théoriques d’une partie des résultats d’une campagne d’expérience portant sur la production et le transport d’électrons relativistes dans une cible d’aluminium. Nous y démontrons la prédominance des e?ets collectifs sur les e?ets collisionels dans la première dizaine de microns de propagation grâce à des modèles de transports déjà existant au début de cette thèse. Ces modèles deviennent insu?sants dans le cas du transport de faisceau dans un isolant. Aussi, dans la deuxième partie, nous présentons un modèle de propagation du faisceau d’électrons relativistes dans un diélectrique incluant l’e?et de l’ionisation de la cible par le faisceau. Nous y quanti?ons les pertes d’énergies des électrons en fonction des paramètres du faisceau et du milieu environnant, et nous démontrons l’existence d’un régime de propagation pour lequel les électrons du plasma ne sont pas à l’équilibre thermodynamique local avec les ions. Ces résultats ont été comparés et con?rmés avec un code cinétique qui prend en compte l’ionisation par champ électrique et par collisions entre les électrons du plasma et les ions. Nous avons examiné la stabilité du faisceau et montré que ce dernier pouvait exciter deux types d’instabilités transverses sur des longueurs de propagation de l’ordre de 30 à 300 µm en fonction de la taille de la perturbation
This PhD thesis is a theoretical study of high-current relativistic electron beam transport through solid targets. In the ?rst part, we present an interpretation of a part of experimental results of laser– produced electron beam transport in aluminium foil targets. We have estimated the fast electron beam characteristics and we demonstrated that the collective e?ects dominate the transport in the ?rst tens of µm of propagation. These quantitative estimates were done with the transport models already existing at the beginning of this thesis. These models are no longer su?cient in the case a fast electron beam propagation in insulator targets. Thus, in the second part, we have developed a propagation model of the beam that includes the e?ects of electric ?eld ionization and the collisional ionization by the plasma electrons. We present estimates of the electron energy loss induced by the target ionization, and we discuss its dependence on the beam and target parameters. In the case of a relatively low fast electron density, we demonstrated that the beam creates a plasma where the electons are not in a local thermodynamic equilibrium with ions. We have examined the beam stability and we demonstrated that transverse instabilities can be excited by the relativistic electron beam over the propagation distances of 30 - 300 µm depending on the perturbation wavelength
8

López, Noriega Mercedes. "Pion interferometry in AuAu collisions at a center of mass energy per nucleon of 200 GeV". The Ohio State University, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=osu1092077196.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Cunningham, Eric Flint. "Photoemission by Large Electron Wave Packets Emitted Out the Side of a Relativistic Laser Focus". BYU ScholarsArchive, 2011. https://scholarsarchive.byu.edu/etd/3054.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
There are at least two common models for calculating the photoemission of accelerated electrons. The 'extended-charge-distribution' method uses the quantum probability current (multiplied by the electron charge) as a source current for Maxwell's equations. The 'point-like-emitter' method treats the electron like a point particle instead of like a diffuse body of charge. Our goal is to differentiate between these two viewpoints empirically. To do this, we consider a large electron wave packet in a high-intensity laser field, in which case the two viewpoints predict measurable photoemission rates that differ by orders of magnitude. Under the treatment of the 'extended-charge-distribution' model, the strength of the radiated field is significantly limited by interferences between different portions of the oscillating charge density. Alternatively, no suppression of photoemission occurs under the 'point-like-emitter' model because the electron is depicted as having no spatial extent. We designed an experiment to characterize the photoemission rates of electrons accelerated in a relativistic laser focus. Free electron wave packets are produced through ionization by an intense laser pulse at the center of a large vacuum chamber. These quantum wave packets can become comparable in size to the laser wavelength through natural spreading and interactions with the sharp ponderomotive gradients of the laser focus. Electron radiation emitted out the side of the focus is collected by one-to-one imaging into a 105-micron gold-jacketed fiber, which carries the light to a single photon detector located outside the chamber. The electron radiation is red-shifted due to mild relativistic acceleration, and we use this signature to spectrally filter the outgoing light to discriminate against background. In addition, the temporal resolution of the electronics allows distinction between light that travels directly from the focus into the collection system and laser light that may scatter from the chamber wall.
10

Ouillé, Marie. "Génération d'impulsions laser proches du cycle optique en durée pour l'interaction laser-matière relativiste à haute cadence". Electronic Thesis or Diss., Institut polytechnique de Paris, 2022. http://www.theses.fr/2022IPPAE007.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Cette thèse expérimentale s’est essentiellement déroulée au Laboratoire d’Optique Appliquée à Palaiseau (France), sur un système laser capable de générer des impulsions proches du cycle optique en durée avec des énergies de plusieurs mJ à une cadence de 1 kHz : la Salle Noire 2. Ce système laser Titane:Sapphire est double CPA avec un filtre non-linéaire entre les deux étages (basé sur la génération d’onde de polarisation croisée ou ‘XPW’) pour améliorer le contraste temporel, suivi d’un étage de post-compression dans une fibre flexible étirée à cœur creux. Grâce à ce système, nous étudions l’interaction laser-matière en régime relativiste à haute cadence. Nous parvenons, d’une part, dans des jets de gaz, à accélérer des électrons dans le sillage du laser jusqu’ à une énergie de quelques MeV; et d’autre part, par interaction avec des miroirs plasma, à générer des harmoniques d’ordres élevés qui sont associées dans le domaine temporel à des impulsions attosecondes. Malgré la prouesse technique de ces expériences, les propriétés des faisceaux XUV et d’électrons ainsi générés restent encore peu compatibles avec des applications phares en aval. À la suite de travaux précédents en Salle Noire 2, l’objectif de cette thèse était d’obtenir des faisceaux aux propriétés stables, ce qui a été accompli en rendant le système laser plus stable et fiable, ainsi qu’en implémentant une boucle de contrôle rapide de la phase enveloppe-porteuse des impulsions laser. En variant la phase enveloppe-porteuse, nous avons ainsi pu générer des impulsions attosecondes uniques en formant une porte temporelle d’intensité relativiste à la surface du miroir plasma, et aussi produire des faisceaux d’électrons stables en énergie et en direction, en contrôlant l’injection d’ électrons dans l’accélérateur laser-plasma. De plus, différents régime d’interaction avec les miroirs plasma ont été étudiés expérimentalement, tels que l’accélération d’électrons dans les longs gr adients de densité plasma, et l’accélération de protons en face avant de la cible (la face sur laquelle le laser est incident) le long de la direction normale à la cible, afin de mesurer de nouvelles observables (spectre d’énergie des électrons, divergence des faisceaux de protons) et ainsi mieux comprendre la dynamique d’interaction laser-plasma
This experimental thesis was essentially conducted at Laboratoire d’Optique Appliquée in Palaiseau (France), on a laser system capable of delivering near-single-cycle duration pulses containing a few mJ of energy at 1kHz repetition rate: the Salle Noire 2. This laser is a Titanium:Sapphire double CPA system with a nonlinear filter in between (based on the crossed polarized wave generation effect) for temporal contrast enhancement, followed by a stretched-flexible hollow-core-fiber based post-compression stage. Using this system, we study laser-matter interaction in the relativistic regime at high repetition rate. We can, on one hand, in gas jets, accelerate electrons in the wakefield of the laser up to several MeVs; and on the other hand, by interacting with plasma mirrors, generate high order harmonics which are associated to bright attosecond pulses in the time domain. Despite the technological prowess in these experiments, the properties of the XUV and electron beams thus generated remain scarcely compatible with the main applications downstream. Following up on previous works in Salle Noire 2, the objective of this thesis was to obtain beams with stable properties, which was achieved by making the laser system more stable and reliable, as well as implementing a fast carrier-envelope phase control loop. By varying the carrier-envelope phase of the laser pulses, we could generate XUV continua/isolated attosecond pulses by forming a relativistic-intensity temporal gate at the surface of the plasma mirror, and also produce electron beams exhibiting stable energy and angle of emission, by controlling the electron injection within the plasma accelerator. Additionally, different regimes of interaction with plasma mirrors were experimentally investigated, such as wakefield acceleration of electrons in long plasma density gradients, and the acceleration of protons on the target’s front side (onto which the laser impinges) along the target no rmal direction, in order to measure new observables (electron energy spectra, proton beam divergence) and thus gain deeper insights into the laser-plasma dynamics

Libri sul tema "Relativistic intensity":

1

Kostyukov, Viktor. Theory of quantum chemistry. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1090584.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
The textbook summarizes the basic theories of quantum chemistry. A comparative analysis of the computational efficiency of computational algorithms implementing these theories from the point of view of the ratio "accuracy — resource intensity" is performed. Considerable attention is paid to the problem of accounting for electronic correlation, as well as relativistic quantum chemical effects. Meets the requirements of the federal state educational standards of higher education of the latest generation. It is intended for undergraduate students of higher educational institutions; it can be used by graduate students studying materials science, structural, organic and physical chemistry, molecular biology and biophysics, biotechnology.
2

Kiefer, Daniel. Relativistic Electron Mirrors: From High Intensity Laser–Nanofoil Interactions. Springer, 2014.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Kiefer, Daniel. Relativistic Electron Mirrors: From High Intensity Laser–Nanofoil Interactions. Springer, 2016.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Kiefer, Daniel. Relativistic Electron Mirrors: From High Intensity Laser-Nanofoil Interactions. Springer, 2014.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Capitoli di libri sul tema "Relativistic intensity":

1

Wang, H., O. Albere, J. Nees, D. Liu, G. Mourou e Z. Chang. "Generation of Relativistic Intensity Pulses at 300-Hz Repetition Rate". In Ultrafast Phenomena XII, 93–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56546-5_25.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Pirozhkov, Alexander S., Sergei V. Bulanov, Timur Zh Esirkepov, Akito Sagisaka, Toshiki Tajima e Hiroyuki Daido. "Intensity Scalings of Attosecond Pulse Generation by the Relativistic-irradiance Laser Pulses". In Springer Series in Optical Sciences, 265–72. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-49119-6_35.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Bowes, B. T., M. C. Downer, H. Langhoff, M. Wilcox, B. Hou, J. Nees e G. Mourou. "Ultrafast radial transport in a micron-scale aluminum plasma excited at relativistic intensity". In Springer Series in Chemical Physics, 334–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/3-540-27213-5_103.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Metral, E., G. Rumolo e W. Herr. "Impedance and Collective Effects". In Particle Physics Reference Library, 105–81. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-34245-6_4.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
AbstractAs the beam intensity increases, the beam can no longer be considered as a collection of non-interacting single particles: in addition to the “single-particle phenomena”, “collective effects” become significant. At low intensity a beam of charged particles moves around an accelerator under the Lorentz force produced by the “external” electromagnetic fields (from the guiding and focusing magnets, RF cavities, etc.). However, the charged particles also interact with themselves (leading to space charge effects) and with their environment, inducing charges and currents in the surrounding structures, which create electromagnetic fields called wake fields. In the ultra-relativistic limit, causality dictates that there can be no electromagnetic field in front of the beam, which explains the term “wake”. It is often useful to examine the frequency content of the wake field (a time domain quantity) by performing a Fourier transformation on it. This leads to the concept of impedance (a frequency domain quantity), which is a complex function of frequency. The charged particles can also interact with other charged particles present in the accelerator (leading to two-stream effects, and in particular to electron cloud effects in positron/hadron machines) and with the counter-rotating beam in a collider (leading to beam–beam effects). As the beam intensity increases, all these “perturbations” should be properly quantified and the motion of the charged particles will eventually still be governed by the Lorentz force but using the total electromagnetic fields, which are the sum of the external and perturbation fields. Note that in some cases a perturbative treatment is not sufficient and the problem has to be solved self consistently. These perturbations can lead to both incoherent (i.e. of a single particle) and coherent (i.e. of the centre of mass) effects, in the longitudinal and in one or both transverse directions, leading to beam quality degradation or even partial or total beam losses. Fortunately, stabilising mechanisms exist, such as Landau damping, electronic feedback systems and linear coupling between the transverse planes (as in the case of a transverse coherent instability, one plane is usually more critical than the other).
5

Sagisaka, A., H. Daido, K. Ogura, S. Orimo, Y. Hayashi, M. Nishiuchi, M. Mori et al. "Observation of Thin Foil Preformed Plasmas with a Relativistic-intensity Ultra-short Pulse Laser by Means of Two-color Interferometer". In Springer Series in Optical Sciences, 273–77. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-49119-6_36.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Rodionov, V. N. "Non-Hermitian $$\mathcal{PT}$$ PT -Symmetric Relativistic Quantum Theory in an Intensive Magnetic Field". In Springer Proceedings in Physics, 357–69. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31356-6_24.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Dyall, Kenneth G., e Knut Faegri. "Introduction". In Introduction to Relativistic Quantum Chemistry. Oxford University Press, 2007. http://dx.doi.org/10.1093/oso/9780195140866.003.0005.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
The quote above from Paul Adrian Maurice Dirac (1929) has been somewhat of an article of faith for modern quantum chemistry. Intensive efforts on the development of theory, algorithms, and techniques have made computational quantum chemistry a very successful representative of the “third way” in modern science—computer modeling has come into its own alongside experiment and theory. Fifty years ago this was a branch of science where predictions were at best qualitative, founded on rather approximate models. Many of these models were quite sophisticated, and much of the insight gained is still valid and valuable, but the developments in both methods and computer hardware up to the present have very much transformed this field. Today standard quantum chemical methods are capable of predicting results with chemical accuracy: reaction energies may be determined within a few kilojoules per mole, and spectral data within a few reciprocal centimeters. At least, this sort of reliability can be expected for “normal” areas of application. Dirac’s main contribution to science was a merging of the two great developments of 20th century physics—quantum mechanics and the (special) theory of relativity. Most of the successful development in quantum chemistry has been based on nonrelativistic quantum mechanics. This may be justified by considering that special relativity is needed primarily to describe objects moving at velocities approaching the speed of light, and that this is mostly not the case for chemical systems. After all, most chemical reactions and phenomena occur at energies below the relativistic domain. Or could relativistic effects nevertheless be important? Even without the recent advances in computational chemistry, it became clear fairly early that nonrelativistic theory was unable to explain certain trends in observed properties. A few examples will suffice to illustrate the anomalies. Experimental determination of the metal–carbon bond length in the group 12 dimethyl compounds showed an increase in bond length from Zn to Cd, but a decrease in bond length from Cd to Hg (Rao et al. 1960). The expected trend was an increase from Zn to Cd and again from Cd to Hg.

Atti di convegni sul tema "Relativistic intensity":

1

Chang Hee Nam, I. Jong Kim, Hyung Taek Kim, Ki Hong Pae, Il Woo Choi, Chul Min Kim, Seong Ku Lee, Jae Hee Sung e Tae Moon Jeong. "Laser particle acceleration at relativistic laser intensity". In 2014 International Conference Laser Optics. IEEE, 2014. http://dx.doi.org/10.1109/lo.2014.6886329.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Wang, H., O. Albert, D. Liu, G. Mourou e Z. Chang. "Generation of Relativistic Intensity Pulses at kHz". In International Conference on Ultrafast Phenomena. Washington, D.C.: OSA, 2000. http://dx.doi.org/10.1364/up.2000.mf14.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Ouillé, Marie, Frederik Boehle, Maxence Thévenet, Maimouna Bocoum, Aline Vernier, Magali Lozano, Jean-Philippe Rousseau et al. "Relativistic-Intensity Near-Single-Cycle KHz Laser Driver". In High Intensity Lasers and High Field Phenomena. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/hilas.2018.ht2a.3.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Lachapelle, Amélie, Kazuto Otani, Sylvain Fourmaux, Stéphane Payeur, Steve Maclean, Michel Piché e Jean-Claude Kieffer. "Direct Laser Field Electron Acceleration in Relativistic Regime". In High Intensity Lasers and High Field Phenomena. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/hilas.2016.hm6b.2.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Ekanayake, Nagitha, Sui Luo, Patrick Grugan, Willow Crosby, Arielle Camilo, Caitlin McCowan, Rosie Scalzi et al. "Electron Shell Ionization of Atoms with Classical, Relativistic Scattering". In High Intensity Lasers and High Field Phenomena. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/hilas.2014.hth3b.4.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Bardsley, J. N., e B. M. Penetrante. "Creation of relativistic plasmas using ultra-high-intensity laser radiation". In Short Wavelength Coherent Radiation: Generation and Applications. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/swcr.1991.tub1.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Theories of ponderomotive forces, relativistic focusing, and harmonic generation are reviewed, and nonlinear effects are demonstrated by using numerical simulations of plasmas produced by subpicosecond lasers.
7

Liu, D., J. Nees, H. Wang, G. Mourou, Z. Chang e O. Albert. "Approaching relativistic intensity with sub-ten-femtosecond pulses". In Conference on Lasers and Electro-Optics (CLEO 2000). Technical Digest. Postconference Edition. TOPS Vol.39. IEEE, 2000. http://dx.doi.org/10.1109/cleo.2000.907493.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Tsaur, Gin-yih. "Relativistic birefringence induced by high-intensity laser field in plasma". In High Intensity Lasers and High Field Phenomena. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/hilas.2011.hwc17.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Arefiev, Alexey, Matthew McCormick, Hernan Quevedo, Roger Bengtson e Todd Ditmire. "Observation of Self-Sustaining Relativistic Ionization Wave Launched by Sheath Field". In High Intensity Lasers and High Field Phenomena. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/hilas.2014.hth3b.6.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Veisz, Laszlo, Daniel Cardenas, Laura Di Lucchio, Tobias Ostermayr, Luisa Hofmann, Matthias Kling, Jörg Schreiber e Paul Gibbon. "Sub-5-fs laser-driven nanophotonics in the relativistic intensity regime". In High Intensity Lasers and High Field Phenomena. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/hilas.2018.ht2a.1.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Rapporti di organizzazioni sul tema "Relativistic intensity":

1

I.Y. Dodin, N.J. Fisch e G.M. Fraiman. Lagrangian Formulation of Relativistic Particle Average Motion in a Laser Field of Arbitrary Intensity. Office of Scientific and Technical Information (OSTI), febbraio 2003. http://dx.doi.org/10.2172/811961.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Vai alla bibliografia