Articoli di riviste sul tema "Rejection antibody-mediated"

Segui questo link per vedere altri tipi di pubblicazioni sul tema: Rejection antibody-mediated.

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "Rejection antibody-mediated".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.

1

Karaveli, Guner, Ebru Gok Oguz, Tolga Yildirim, Zafer Ercan, Ozgur Merhametsiz, Ayhan Haspulat e Deniz Ayli. "Plasmapheresis in Chronic Active Antibody-Mediated Rejection". Turkish Nephrology Dialysis Transplantation 24, n. 01 (26 gennaio 2015): 123–25. http://dx.doi.org/10.5262/tndt.2015.1001.20.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Amore, Alessandro. "Antibody-mediated rejection". Current Opinion in Organ Transplantation 20, n. 5 (ottobre 2015): 536–42. http://dx.doi.org/10.1097/mot.0000000000000230.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Westall, Glen P., Miranda A. Paraskeva e Greg I. Snell. "Antibody-mediated rejection". Current Opinion in Organ Transplantation 20, n. 5 (ottobre 2015): 492–97. http://dx.doi.org/10.1097/mot.0000000000000235.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Hogen, Rachel, Joseph DiNorcia e Kiran Dhanireddy. "Antibody-mediated rejection". Current Opinion in Organ Transplantation 22, n. 2 (aprile 2017): 97–104. http://dx.doi.org/10.1097/mot.0000000000000391.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Kittleson, Michelle M., e Jon A. Kobashigawa. "Antibody-mediated rejection". Current Opinion in Organ Transplantation 17, n. 5 (ottobre 2012): 551–57. http://dx.doi.org/10.1097/mot.0b013e3283577fef.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Arias, Manuel, David N. Rush, Chris Wiebe, Ian W. Gibson, Tom D. Blydt-Hansen, Peter W. Nickerson, Joana Sellarés et al. "Antibody-Mediated Rejection". Transplantation 98 (agosto 2014): S3—S21. http://dx.doi.org/10.1097/tp.0000000000000218.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Knechtle, Stuart. "Antibody‐Mediated Rejection". American Journal of Transplantation 20, S4 (giugno 2020): 1. http://dx.doi.org/10.1111/ajt.16063.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Akalin, Enver, e Bruno Watschinger. "Antibody-Mediated Rejection". Seminars in Nephrology 27, n. 4 (luglio 2007): 393–407. http://dx.doi.org/10.1016/j.semnephrol.2007.05.001.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Halverson, Laura P., e Ramsey R. Hachem. "Antibody-Mediated Rejection". Clinics in Chest Medicine 44, n. 1 (marzo 2023): 95–103. http://dx.doi.org/10.1016/j.ccm.2022.10.008.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Papadimitriou, John C., Cinthia B. Drachenberg, Emilio Ramos, Debra Kukuruga, David K. Klassen, Richard Ugarte, Joseph Nogueira, Charles Cangro, Matthew R. Weir e Abdolreza Haririan. "Antibody-Mediated Allograft Rejection". Transplantation Journal 95, n. 1 (gennaio 2013): 128–36. http://dx.doi.org/10.1097/tp.0b013e3182777f28.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
11

Chin, Clifford. "Cardiac antibody-mediated rejection". Pediatric Transplantation 16, n. 5 (15 aprile 2012): 404–12. http://dx.doi.org/10.1111/j.1399-3046.2012.01690.x.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
12

Arias, Manuel, Daniel Serón, Ignacio Herrero, David N. Rush, Chris Wiebe, Peter W. Nickerson, Piedad Ussetti, Emilio Rodrigo e Maria-Angeles de Cos. "Subclinical Antibody-Mediated Rejection". Transplantation 101 (giugno 2017): S1—S18. http://dx.doi.org/10.1097/tp.0000000000001735.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
13

&NA;. "Antibody-Mediated Allograft Rejection". Transplantation Journal 95, n. 5 (marzo 2013): e30. http://dx.doi.org/10.1097/01.tp.0000427950.24640.c6.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
14

Zhang, Rubin. "Donor-Specific Antibodies in Kidney Transplant Recipients". Clinical Journal of the American Society of Nephrology 13, n. 1 (26 aprile 2017): 182–92. http://dx.doi.org/10.2215/cjn.00700117.

Testo completo
Abstract (sommario):
Donor-specific antibodies have become an established biomarker predicting antibody-mediated rejection. Antibody-mediated rejection is the leading cause of graft loss after kidney transplant. There are several phenotypes of antibody-mediated rejection along post-transplant course that are determined by the timing and extent of humoral response and the various characteristics of donor-specific antibodies, such as antigen classes, specificity, antibody strength, IgG subclasses, and complement binding capacity. Preformed donor-specific antibodies in sensitized patients can trigger hyperacute rejection, accelerated acute rejection, and early acute antibody-mediated rejection. De novo donor-specific antibodies are associated with late acute antibody-mediated rejection, chronic antibody-mediated rejection, and transplant glomerulopathy. The pathogeneses of antibody-mediated rejection include not only complement-dependent cytotoxicity, but also complement-independent pathways of antibody-mediated cellular cytotoxicity and direct endothelial activation and proliferation. The novel assay for complement binding capacity has improved our ability to predict antibody-mediated rejection phenotypes. C1q binding donor-specific antibodies are closely associated with acute antibody-mediated rejection, more severe graft injuries, and early graft failure, whereas C1q nonbinding donor-specific antibodies correlate with subclinical or chronic antibody-mediated rejection and late graft loss. IgG subclasses have various abilities to activate complement and recruit effector cells through the Fc receptor. Complement binding IgG3 donor-specific antibodies are frequently associated with acute antibody-mediated rejection and severe graft injury, whereas noncomplement binding IgG4 donor-specific antibodies are more correlated with subclinical or chronic antibody-mediated rejection and transplant glomerulopathy. Our in-depth knowledge of complex characteristics of donor-specific antibodies can stratify the patient’s immunologic risk, can predict distinct phenotypes of antibody-mediated rejection, and hopefully, will guide our clinical practice to improve the transplant outcomes.
Gli stili APA, Harvard, Vancouver, ISO e altri
15

Rascio, Federica, Paola Pontrelli, Giuseppe Stefano Netti, Elisabetta Manno, Barbara Infante, Simona Simone, Giuseppe Castellano et al. "IgE-Mediated Immune Response and Antibody-Mediated Rejection". Clinical Journal of the American Society of Nephrology 15, n. 10 (9 settembre 2020): 1474–83. http://dx.doi.org/10.2215/cjn.02870320.

Testo completo
Abstract (sommario):
Background and objectivesActive antibody-mediated rejection is the main cause of kidney transplant loss, sharing with SLE the alloimmune response and the systemic activation of the IFN-α pathway. IgE-mediated immune response plays a key role in the development of SLE nephritis and is associated with IFN-α secretion. The aim of our study was to investigate IgE-mediated immune response in antibody-mediated rejection.Design, setting, participants, & measurementsThis was a cross-sectional study of 56 biopsy-proven antibody-mediated rejection study participants, 80 recipients with normal graft function/histology (control), 16 study participants with interstitial fibrosis/tubular atrophy, and six participants with SLE. We evaluated graft IgE deposition, tryptase (a mast cell marker), and CD203 (a specific marker of activated basophils) by immunofluorescence/confocal microscopy. In addition, we measured serum concentration of human myxovirus resistance protein 1, an IFN-α–induced protein, and anti-HLA IgE.ResultsWe observed a significantly higher IgE deposition in tubules and glomeruli in antibody-mediated rejection (1766±79 pixels) and SLE (1495±43 pixels) compared with interstitial fibrosis/tubular atrophy (582±122 pixels) and control (253±50 pixels). Patients with antibody-mediated rejection, but not control patients and patients with interstitial fibrosis/tubular atrophy, presented circulating anti-HLA IgE antibodies, although with a low mean fluorescence intensity. In addition, immunofluorescence revealed the presence of both mast cells and activated basophils in antibody-mediated rejection but not in control and interstitial fibrosis/tubular atrophy. The concentration of circulating basophils was significantly higher in antibody-mediated rejection compared with control and interstitial fibrosis/tubular atrophy. MxA serum levels were significantly higher in antibody-mediated rejection compared with control and correlated with the extent of IgE deposition.ConclusionsOur data suggest that IgE deposition and the subsequent recruitment of basophils and mast cells within the kidney transplant might play a role in antibody-mediated rejection.
Gli stili APA, Harvard, Vancouver, ISO e altri
16

Terasaki, Paul, e Kazuo Mizutani. "Antibody Mediated Rejection: Update 2006". Clinical Journal of the American Society of Nephrology 1, n. 3 (12 aprile 2006): 400–403. http://dx.doi.org/10.2215/cjn.02311205.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
17

Adam, Benjamin A., e Howard M. Gebel. "IgE in Antibody-Mediated Rejection". Clinical Journal of the American Society of Nephrology 15, n. 10 (9 settembre 2020): 1392–93. http://dx.doi.org/10.2215/cjn.13000820.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
18

Colvin, R. B. "Dimensions of Antibody-Mediated Rejection". American Journal of Transplantation 10, n. 7 (23 aprile 2010): 1509–10. http://dx.doi.org/10.1111/j.1600-6143.2010.03172.x.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
19

Colvin, Robert B., e R. Neal Smith. "Antibody-mediated organ-allograft rejection". Nature Reviews Immunology 5, n. 10 (20 settembre 2005): 807–17. http://dx.doi.org/10.1038/nri1702.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
20

Baldwin, William, e Anna Valujskikh. "Mechanisms Underlying Antibody-Mediated Rejection". Circulation 141, n. 6 (11 febbraio 2020): 479–81. http://dx.doi.org/10.1161/circulationaha.119.044541.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
21

Suhas, Bavikar, Oswal Ajay e Swarnalata Gowrishankar. "Antibody mediated rejection in KT". Indian Journal of Transplantation 8, n. 4 (ottobre 2014): 132. http://dx.doi.org/10.1016/j.ijt.2014.12.020.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
22

Hachem, Ramsey. "Antibody-mediated lung transplant rejection". Current Respiratory Care Reports 1, n. 3 (27 giugno 2012): 157–61. http://dx.doi.org/10.1007/s13665-012-0019-8.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
23

Vella, John P., e Alexander C. Wiseman. "Rejection: T Cell-Mediated and Antibody-Mediated". Nephrology Self-Assessment Program 18, n. 5 (novembre 2019): 297–302. http://dx.doi.org/10.1681/nsap.2019.18.5.8.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
24

Kvan, V. S., N. N. Koloskova, Yu A. Kachanova, N. N. Sayfullina, A. Yu Goncharova, L. B. Krugly e A. O. Shevchenko. "Antibody-mediated rejection in heart transplantation". Russian Journal of Transplantology and Artificial Organs 23, n. 4 (12 novembre 2021): 47–61. http://dx.doi.org/10.15825/1995-1191-2021-4-47-61.

Testo completo
Abstract (sommario):
The role of antibody-mediated rejection in predicting survival among heart recipients has been studied in clinical transplantology for over 20 years. This condition is a significant risk factor for heart failure and graft vasculopathy. Antibody-mediated rejection results from activation of the humoral immune system and production of donorspecific antibodies that cause myocardial injury through the complement system. The presence of donor-specific antibodies is associated with lower allograft survival. Treatment of antibody-mediated rejection should take into account the rejection category and the presence or absence of graft dysfunction. The main principle of treatment is to suppress humoral immunity at different levels. World clinical practice has made significant inroads into the study of this issue. However, further research is required to identify and develop optimal treatment regimens for patients with humoral rejection in cardiac transplantation.
Gli stili APA, Harvard, Vancouver, ISO e altri
25

van Agteren, Madelon, Willem Weimar, Annelies E. de Weerd, Peter A. W. te Boekhorst, Jan N. M. Ijzermans, Jaqueline van de Wetering e Michiel G. H. Betjes. "The First Fifty ABO Blood Group Incompatible Kidney Transplantations: The Rotterdam Experience". Journal of Transplantation 2014 (2014): 1–6. http://dx.doi.org/10.1155/2014/913902.

Testo completo
Abstract (sommario):
This study describes the single center experience and long-term results of ABOi kidney transplantation using a pretransplantation protocol involving immunoadsorption combined with rituximab, intravenous immunoglobulins, and triple immune suppression. Fifty patients received an ABOi kidney transplant in the period from 2006 to 2012 with a follow-up of at least one year. Eleven antibody mediated rejections were noted of which 5 were mixed antibody and cellular mediated rejections. Nine cellular mediated rejections were recorded. Two grafts were lost due to rejection in the first year. One-year graft survival of the ABOi grafts was comparable to 100 matched ABO compatible renal grafts, 96% versus 99%. At 5-year follow-up, the graft survival was 90% in the ABOi versus 97% in the control group. Posttransplantation immunoadsorption was not an essential part of the protocol and no association was found between antibody titers and subsequent graft rejection. Steroids could be withdrawn safely 3 months after transplantation. Adverse events specifically related to the ABOi protocol were not observed. The currently used ABOi protocol shows good short and midterm results despite a high rate of antibody mediated rejections in the first years after the start of the program.
Gli stili APA, Harvard, Vancouver, ISO e altri
26

Rozentâls, Rafails, e Ieva Ziediņa. "Antibody-Mediated Rejection in Kidney Transplant Recipients". Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences 67, n. 1 (1 aprile 2013): 2–8. http://dx.doi.org/10.2478/prolas-2013-0001.

Testo completo
Abstract (sommario):
This paper provides a review of the significant problem of humoral, or antibody-mediated rejection, in kidney transplantation. The main cause of antibody-mediated rejection is donor-specific anti-HLA antibodies. Patients with anti-HLA antibodies are called sensitised patients. The outcome of humoral rejection is unfavourable: graft dysfunction and failure have been frequent from the early post-transplant period and are continuing. International laboratories and clinics offer sensitive and accurate methods to determine antibodies before and after kidney transplantation, but the methods are not always successful in recognition of sensitised patients. For diagnostics of humoral rejection the important issue is detecting complement breakdown deposition (C4d) in peritubular capillaries during immunohistological examination. On the one hand, their presence is characteristic for humoral rejection, but on the other hand, they can occur without any clinical changes or can remain undetected during severe humoral rejection. Current methods of prevention, diagnostics and treatment of humoral rejection are discussed. Difficulties of evaluation of chronic antibody-mediated injury are particularly highlighted.
Gli stili APA, Harvard, Vancouver, ISO e altri
27

Halverson, Laura P., e Ramsey R. Hachem. "Antibody-Mediated Rejection and Lung Transplantation". Seminars in Respiratory and Critical Care Medicine 42, n. 03 (24 maggio 2021): 428–35. http://dx.doi.org/10.1055/s-0041-1728796.

Testo completo
Abstract (sommario):
AbstractAntibody-mediated rejection (AMR) is now a widely recognized form of lung allograft rejection, with mounting evidence for AMR as an important risk factor for the development of chronic lung allograft dysfunction and markedly decreased long-term survival. Despite the recent development of the consensus diagnostic criteria, it remains a challenging diagnosis of exclusion. Furthermore, even after diagnosis, treatment directed at pulmonary AMR has been nearly exclusively derived from practices with other solid-organ transplants and other areas of medicine, such that there is a significant lack of data regarding the efficacy for these in pulmonary AMR. Lastly, outcomes after AMR remain quite poor despite aggressive treatment. In this review, we revisit the history of AMR in lung transplantation, describe our current understanding of its pathophysiology, discuss the use and limitations of the consensus diagnostic criteria, review current treatment strategies, and summarize long-term outcomes. We conclude with a synopsis of our most pressing gaps in knowledge, introduce recommendations for future directions, and highlight promising areas of active research.
Gli stili APA, Harvard, Vancouver, ISO e altri
28

Gosset, Clément, Carmen Lefaucheur e Denis Glotz. "New insights in antibody-mediated rejection". Current Opinion in Nephrology and Hypertension 23, n. 6 (novembre 2014): 597–604. http://dx.doi.org/10.1097/mnh.0000000000000069.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
29

Manfredini, Valentina, Ornella Leone, Valentina Agostini e Luciano Potena. "Antibody-mediated rejection in heart transplantation". Current Opinion in Organ Transplantation 22, n. 3 (giugno 2017): 207–14. http://dx.doi.org/10.1097/mot.0000000000000407.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
30

Everly, Jason J., R. Carlin Walsh, Rita R. Alloway e E. Steve Woodle. "Proteasome inhibition for antibody-mediated rejection". Current Opinion in Organ Transplantation 14, n. 6 (dicembre 2009): 662–66. http://dx.doi.org/10.1097/mot.0b013e328330f304.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
31

Dick, André A. S., e Simon Horslen. "Antibody-mediated rejection after intestinal transplantation". Current Opinion in Organ Transplantation 17, n. 3 (giugno 2012): 250–57. http://dx.doi.org/10.1097/mot.0b013e3283533847.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
32

Shimizu, Akira, e Robert Colvin. "Pathological Features of Antibody-Mediated Rejection". Current Drug Target -Cardiovascular & Hematological Disorders 5, n. 3 (1 giugno 2005): 199–214. http://dx.doi.org/10.2174/1568006054064744.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
33

Weissenbacher, Annemarie, Theresa Hautz, Bernhard Zelger, Bettina G. Zelger, Verena Mayr, Gerald Brandacher, Johann Pratschke e Stefan Schneeberger. "Antibody-mediated rejection in hand transplantation". Transplant International 27, n. 2 (25 novembre 2013): e13-e17. http://dx.doi.org/10.1111/tri.12233.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
34

Westall, Glen P., e Greg I. Snell. "Antibody-Mediated Rejection in Lung Transplantation". Transplantation 98, n. 9 (novembre 2014): 927–30. http://dx.doi.org/10.1097/tp.0000000000000392.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
35

Sage, Peter T. "Preventing Antibody-mediated Rejection During Transplantation". Transplantation 102, n. 10 (ottobre 2018): 1597–98. http://dx.doi.org/10.1097/tp.0000000000002225.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
36

Sureshkumar, Kalathil K., Sabiha M. Hussain, Barbara J. Carpenter, Stephen E. Sandroni e Richard J. Marcus. "Antibody-mediated rejection following renal transplantation". Expert Opinion on Pharmacotherapy 8, n. 7 (maggio 2007): 913–21. http://dx.doi.org/10.1517/14656566.8.7.913.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
37

Racusen, L. C. "Antibody-Mediated rejection in the kidney". Transplantation Proceedings 36, n. 3 (aprile 2004): 768–69. http://dx.doi.org/10.1016/j.transproceed.2004.03.032.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
38

Rose, Marlene L. "Antibody-mediated rejection following cardiac transplantation". Transplantation Reviews 7, n. 3 (luglio 1993): 140–52. http://dx.doi.org/10.1016/s0955-470x(05)80013-8.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
39

Kfoury, Abdallah G., Deborah Budge, Jose Nativi-Nicolau, Rami A. Alharethi, M. Elizabeth H. Hammond e Dylan V. Miller. "Antibody-mediated Rejection in Heart Transplantation". Current Transplantation Reports 1, n. 4 (13 settembre 2014): 246–56. http://dx.doi.org/10.1007/s40472-014-0029-2.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
40

Kulkarni, H. S., B. C. Bemiss e R. R. Hachem. "Antibody-Mediated Rejection in Lung Transplantation". Current Transplantation Reports 2, n. 4 (30 settembre 2015): 316–23. http://dx.doi.org/10.1007/s40472-015-0074-5.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
41

Lee, Michael. "Antibody-Mediated Rejection After Liver Transplant". Gastroenterology Clinics of North America 46, n. 2 (giugno 2017): 297–309. http://dx.doi.org/10.1016/j.gtc.2017.01.005.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
42

Bery, Amit I., e Ramsey R. Hachem. "Antibody-mediated rejection after lung transplantation". Annals of Translational Medicine 8, n. 6 (marzo 2020): 411. http://dx.doi.org/10.21037/atm.2019.11.86.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
43

Hachem, Ramsey R. "Acute Rejection and Antibody-Mediated Rejection in Lung Transplantation". Clinics in Chest Medicine 38, n. 4 (dicembre 2017): 667–75. http://dx.doi.org/10.1016/j.ccm.2017.07.008.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
44

Puttarajappa, Chethan, Ron Shapiro e Henkie P. Tan. "Antibody-Mediated Rejection in Kidney Transplantation: A Review". Journal of Transplantation 2012 (2012): 1–9. http://dx.doi.org/10.1155/2012/193724.

Testo completo
Abstract (sommario):
Antibody mediated rejection (AMR) poses a significant and continued challenge for long term graft survival in kidney transplantation. However, in the recent years, there has emerged an increased understanding of the varied manifestations of the antibody mediated processes in kidney transplantation. In this article, we briefly discuss the various histopathological and clinical manifestations of AMRs, along with describing the techniques and methods which have made it easier to define and diagnose these rejections. We also review the emerging issues of C4d negative AMR, its significance in long term allograft survival and provide a brief summary of the current management strategies for managing AMRs in kidney transplantation.
Gli stili APA, Harvard, Vancouver, ISO e altri
45

Petty, Michael. "Antibody-Mediated Rejection in Solid Organ Transplant". AACN Advanced Critical Care 27, n. 3 (1 luglio 2016): 316–23. http://dx.doi.org/10.4037/aacnacc2016366.

Testo completo
Abstract (sommario):
Within a little more than a decade, the transplant of human organs for end-stage organ disease became a reality. The early barriers to successful long-term graft and patient survival were related to the inability to effectively control the immune system such that it would not attack the donor tissue but would still recognize and destroy invading organisms and cells. As immunosuppressive therapy has been refined and proper matching of donors and recipients has been improved, hyperacute rejection has become a rare occurrence and acute rejection has been markedly controlled. However, antibody-mediated rejection remains an important impediment to increased survival of transplanted organs. This article provides readers with a broad overview of the immune system, discusses mechanisms of transplant rejection, and details prevention, detection, and treatment of antibody-mediated rejection in solid organ transplant.
Gli stili APA, Harvard, Vancouver, ISO e altri
46

Arjuna, Ashwini, Michael T. Olson, Sofya Tokman, Rajat Walia, Thalachallour Mohanakumar, A. Samad Hashimi, Michael A. Smith, Ross M. Bremner e Ashraf Omar. "Antibody-Mediated Rejection and Sponge Effect in a Redo Lung Transplant Recipient". Case Reports in Transplantation 2021 (10 giugno 2021): 1–4. http://dx.doi.org/10.1155/2021/6637154.

Testo completo
Abstract (sommario):
Long-term survival after lung transplant remains severely limited by chronic lung allograft dysfunction. Antibody-mediated rejection of lung transplant allografts is usually caused by donor-specific antibodies (DSAs) directed toward donor human leukocyte antigens (HLAs). Typically, patients with antibody-mediated rejection have significantly higher circulating DSAs and increased mean fluorescence intensity than those without antibody-mediated rejection. However, some patients with antibody-mediated rejection have low mean fluorescence intensities, partly due to the “sponge effect” related to DSAs binding to HLA molecules within the lung. Herein, we report the case of an 18-year-old, female lung transplant recipient who required retransplantation and developed circulating DSAs directed toward the first allograft but detected in circulation only after retransplantation. The present case draws attention to a rare finding of sponge effect in a patient with antibody-mediated rejection leading to allograft failure.
Gli stili APA, Harvard, Vancouver, ISO e altri
47

Aguilera Agudo, Cristina, Manuel Gómez Bueno e Isabel Krsnik Castello. "Daratumumab for Antibody-mediated Rejection in Heart Transplant—A Novel Therapy: Successful Treatment of Antibody-mediated Rejection". Transplantation 105, n. 3 (22 febbraio 2021): e30-e31. http://dx.doi.org/10.1097/tp.0000000000003505.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
48

Tatar, Erhan, Adam Uslu, Cenk Simsek e Enver Vardar. "Evaluation of Late Antibody-Mediated Rejection (C4d-Mediated Rejection): A Single-Center Experience". Experimental and Clinical Transplantation 13, Supplement 1 (1 aprile 2015): 259–62. http://dx.doi.org/10.6002/ect.mesot2014.p67.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
49

Fekete, A. A., S. W. Yau, J. G. Youssef, A. Goodarzi e H. J. Huang. "Antibody Mediated Rejection of Unrelated Donor Lung". Journal of Heart and Lung Transplantation 40, n. 4 (aprile 2021): S509. http://dx.doi.org/10.1016/j.healun.2021.01.2056.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
50

Bansal, SB. "Rituximab use in late antibody-mediated rejection". Indian Journal of Nephrology 26, n. 5 (2016): 315. http://dx.doi.org/10.4103/0971-4065.179305.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!

Vai alla bibliografia