Articoli di riviste sul tema "Rare earth metals"

Segui questo link per vedere altri tipi di pubblicazioni sul tema: Rare earth metals.

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "Rare earth metals".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.

1

Djuraev, Davron Rakhmonovich, e Mokhigul Madiyorovna Jamilova. "Physical Properties Of Rare Earth Elements". American Journal of Applied sciences 03, n. 01 (30 gennaio 2021): 79–88. http://dx.doi.org/10.37547/tajas/volume03issue01-13.

Testo completo
Abstract (sommario):
The article studies the physical properties of rare earth metals, pays special attention to their unique properties, studies the main aspects of the application of rare earth metals in industry. Also, the structure and stability of various forms of sesquioxides of rare earth elements, in particular, europium, as well as the effect of the method of oxide preparation on its structure and properties are considered. The analysis of the ongoing phase transformations of rare earth metals is made. The article emphasizes the use of correct choices to achieve a large technical and economic effect when using rare earth metals in industry. The article is intended for teachers working in the field of physics and chemistry, as well as for students of the specialty "physics and chemistry".
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Giacalone, Joseph A. "The Market For The "Not-So-Rare" Rare Earth Elements". Journal of International Energy Policy (JIEP) 1, n. 1 (3 maggio 2012): 11–18. http://dx.doi.org/10.19030/jiep.v1i1.7013.

Testo completo
Abstract (sommario):
This paper examines the market for the Rare earth elements. These are comprised of 17 elements of the periodic table which include 15 elements from the group known as lanthanides and two additional elements known as scandium and yttrium. The metals are often found combined together in ores and must be separated into its individual elements. The fact is that rare earth metals are not rare in terms of the quantity present in the earths crust. However, the metals are less concentrated than other more common metals and the extraction and separation processes necessitate high research and development costs and large capital outlays.The various applications of rare earth elements can be broadly classified into four major categories, namely: High Technology Consumer Products, Environmentally Friendly Products, Industrial and Medical Devices, and National Defense Systems. The demand for such high technology products is rapidly increasing causing a simultaneous upsurge in the demand for rare earth metals as well.On the supply side, China dominates the production rare earth elements, mining approximately 97% of total world production. Consequently, most countries must rely on imports of these REEs to facilitate production of the various systems and products that are dependent on the rare earth metals as raw materials. This near-monopoly imposes several supply-chain risks on the importing nations which are exploring ways to mitigate the potential economic harm associated with these risks.
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Nickels, Liz. "Reclaiming rare earth metals". Metal Powder Report 75, n. 4 (luglio 2020): 189–92. http://dx.doi.org/10.1016/j.mprp.2019.12.003.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Johansson, Börje, Lars Nordström, Olle Eriksson e M. S. S. Brooks. "Magnetism in Rare-Earth Metals and Rare-Earth Intermetallic Compounds". Physica Scripta T39 (1 gennaio 1991): 100–109. http://dx.doi.org/10.1088/0031-8949/1991/t39/014.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Matakova, Rema, e K. Sagadieva. "Electrochemistry of rare earth metals". Chemical Bulletin of Kazakh National University, n. 2 (15 maggio 2012): 114. http://dx.doi.org/10.15328/chemb_2012_2114-124.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Kurysheva, V. V., E. A. Ivanova e P. E. Prokhorva. "Extractants for rare earth metals". Chimica Techno Acta 3, n. 2 (2016): 97–120. http://dx.doi.org/10.15826/chimtech.2016.3.2.008.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Netzer, F. P., e J. A. D. Matthew. "Surfaces of rare earth metals". Reports on Progress in Physics 49, n. 6 (1 giugno 1986): 621–81. http://dx.doi.org/10.1088/0034-4885/49/6/001.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Silver, G. L. "Reactions of Rare Earth Metals". Journal of Chemical Education 72, n. 10 (ottobre 1995): 956. http://dx.doi.org/10.1021/ed072p956.1.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Isshiki, Minoru. "Purification of rare earth metals". Vacuum 47, n. 6-8 (giugno 1996): 885–87. http://dx.doi.org/10.1016/0042-207x(96)00087-5.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Ragnarsdóttir, Kristín Vala. "Rare metals getting rarer". Nature Geoscience 1, n. 11 (novembre 2008): 720–21. http://dx.doi.org/10.1038/ngeo302.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
11

Giacalone, Joseph A., e Genai Greenidge. "China, The World Trade Organization, And The Market For Rare Earth Minerals". International Business & Economics Research Journal (IBER) 12, n. 3 (19 febbraio 2013): 257. http://dx.doi.org/10.19030/iber.v12i3.7669.

Testo completo
Abstract (sommario):
Rare earth elements (also referred to as rare earth minerals, rare earth metals, green elements, rare earths or simply REEs) are comprised of 17 elements of the periodic table. The metals are often found combined together in ores and must be separated into its individual elements. On the supply side of the market, China is currently the largest producer of rare earth elements in the world, mining at least 90% of total world production. Consequently, many countries around the world rely on imports of these REEs to facilitate production of the various systems and products that are dependent on the rare earth metals as raw materials. With one supplier effectively monopolizing the rare earth industry, this imposes severe supply-chain risks to the producers of products that rely on rare earth minerals. After several actions that have restricted the supply, the United States, the European Union, and Japan have challenged China for violating provisions of its membership in the World Trade Organization. This paper will examine the rare earth industry, Chinas near-monopoly, global supply-chain risks, and strategies to reduce dependence on China, including the invocation of the WTOs dispute resolution process.
Gli stili APA, Harvard, Vancouver, ISO e altri
12

Akanova, G. Zh, A. G. Ismailova e D. Kh Kamysbayev. "Separation methods of rare earth metals". Vestnik KazNRTU 141, n. 5 (2020): 749–54. http://dx.doi.org/10.51301/vest.su.2020.v141.i5.126.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
13

Troshin, A., e A. Borukhovich. "Rare earth metals and new physics". Nanoindustry Russia, n. 6 (2015): 42–49. http://dx.doi.org/10.22184/1993-8578.2015.60.6.42.49.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
14

Wackett, Lawrence P. "Microbial extraction of rare earth metals". Microbial Biotechnology 15, n. 4 (30 marzo 2022): 1296–97. http://dx.doi.org/10.1111/1751-7915.14055.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
15

Lyubov, D. M., e A. A. Trifonov. "Polyhydride Complexes of Rare-Earth Metals". INEOS OPEN 3, n. 1 (luglio 2020): 1–19. http://dx.doi.org/10.32931/io2001r.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
16

Bochkarev, Mikhail N. "Arene complexes of rare-earth metals". Russian Chemical Reviews 69, n. 9 (30 settembre 2000): 783–94. http://dx.doi.org/10.1070/rc2000v069n09abeh000601.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
17

Vajda, P., e J. N. Daou. "Lattice defects in rare-earth metals". Philosophical Magazine A 63, n. 5 (maggio 1991): 883–96. http://dx.doi.org/10.1080/01418619108213922.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
18

Stirling, W. G., K. A. McEwen e C. K. Loong. "Intermultiplet Transitions in Rare-Earth Metals". Physica B+C 136, n. 1-3 (gennaio 1986): 420–23. http://dx.doi.org/10.1016/s0378-4363(86)80107-3.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
19

Yakovkin, I. N. "Valence of “divalent” rare earth metals". Applied Surface Science 256, n. 15 (maggio 2010): 4845–49. http://dx.doi.org/10.1016/j.apsusc.2010.01.114.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
20

Blyth, R. I. R., R. Cosso, S. S. Dhesi, K. Newstead, A. M. Begley, R. G. Jordan e S. D. Barrett. "Surface structure of rare earth metals". Surface Science Letters 251-252 (luglio 1991): A354. http://dx.doi.org/10.1016/0167-2584(91)90958-t.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
21

Blyth, R. I. R., R. Cosso, S. S. Dhesi, K. Newstead, A. M. Begley, R. G. Jordan e S. D. Barrett. "Surface structure of rare earth metals". Surface Science 251-252 (luglio 1991): 722–26. http://dx.doi.org/10.1016/0039-6028(91)91086-d.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
22

Hachiya, Kan, e Yasuhiko Ito. "Interatomic potentials for rare-earth metals". Journal of Physics: Condensed Matter 11, n. 34 (16 agosto 1999): 6543–51. http://dx.doi.org/10.1088/0953-8984/11/34/306.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
23

Wang, Shijie. "Rare Earth Metals: Resourcefulness and Recovery". JOM 65, n. 10 (29 agosto 2013): 1317–20. http://dx.doi.org/10.1007/s11837-013-0732-y.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
24

Campbell, Gary A. "Rare earth metals: a strategic concern". Mineral Economics 27, n. 1 (11 aprile 2014): 21–31. http://dx.doi.org/10.1007/s13563-014-0043-y.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
25

Matsuoka, Eiichi, Yo Tomiyama, Kotaro Iwasawa, Hitoshi Sugawara, Takahiro Sakurai e Hitoshi Ohta. "Magnetic anisotropy of tetragonal rare-earth compounds RRu2Al2B (R: rare-earth metals)". Journal of the Korean Physical Society 62, n. 12 (giugno 2013): 1866–68. http://dx.doi.org/10.3938/jkps.62.1866.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
26

Chernyi, S. A. "Secondary Resources of Rare Еarth Мetals". Ecology and Industry of Russia 24, n. 9 (1 settembre 2020): 44–50. http://dx.doi.org/10.18412/1816-0395-2020-9-44-50.

Testo completo
Abstract (sommario):
The article provides an overview of the main existing methods for recycling rare earth metals from various types of waste. It was noted that the demand for rare-earth metals is increasing annually due to the growth of advanced technologies, mainly in the sectors of electronics, power engineering and photonics. It has been established that in countries producing final products of high processing, the chemical-technological processes of processing goods that have worked out their life cycle, and, first of all, fluorescent lamps, NdFeB magnets from electronic devices, and nickel-metal hydride (NiMeH) batteries containing rare earths are most quickly created. The most profitable and recycling option is the reuse of products containing rare-earth metals, however, such technologies are applicable for a narrow range of waste. Another important area of REM recycling is the processing of industrial waste. For countries with developed mining and chemical industries, mining processing technologies are attractive. It is shown that for Russia, more appropriate are schemes for the disposal of industrial waste, primarily waste from the production of apatite concentrate. The main problems of the development of REM recycling are identified: low content and dispersion of rare earths in waste; the presence of impurities that impede the extraction of valuable components and the toxicity of the used recycling schemes.
Gli stili APA, Harvard, Vancouver, ISO e altri
27

Cherkasova, Tatiana, Elizaveta Cherkasova, Anastasia Tikhomirova, Alyona Bobrovni-kova e Irina Goryunova. "Rare and Rare-Earth Metals in Coal Processing Waste". E3S Web of Conferences 21 (2017): 02009. http://dx.doi.org/10.1051/e3sconf/20172102009.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
28

Liu, Hang, Yao Zhang, Yikun Luan, Huimin Yu e Dianzhong Li. "Research Progress in Preparation and Purification of Rare Earth Metals". Metals 10, n. 10 (15 ottobre 2020): 1376. http://dx.doi.org/10.3390/met10101376.

Testo completo
Abstract (sommario):
The purity of rare earth metals is one of the most important factors to research and develop high technique materials. However, high purity rare earth metals are not easily achieved. This review summarizes the preparation and purification methods of rare earth metals. First, the preparation principle and process of molten salt electrolysis and metal thermal reduction are introduced. The main sources of metallic impurities and interstitial impurities in rare earth metals as well as the action mechanism of reducing the concentration of different impurities are analyzed and summarized. Then, the purification principle and process of vacuum distillation, arc melting, zone melting, and solid state electromigration are also discussed. Furthermore, the removal effect and function rule of metallic impurities and interstitial impurities in rare earth metals are outlined. Finally, the crucial issues in the development of high purity rare earth metals are put forward, and the development direction of high purity rare earth metals in future are pointed out on this basis.
Gli stili APA, Harvard, Vancouver, ISO e altri
29

Firsov, Aleksandr V., Aleksandr V. Artamonov, Dar'ya N. Smirnova, Aleksandr P. Ilyin e Segreiy P. Kochetkov. "SORPTION OF RARE-EARTH METALS FROM NO EVAPORATED DIHYDRATE PHOSPHORIC ACID ON MACROPOROUS STRONGLY ACIDIC CATIONITE". IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY KHIMIYA KHIMICHESKAYA TEKHNOLOGIYA 59, n. 4 (12 luglio 2018): 50. http://dx.doi.org/10.6060/tcct.20165904.5321.

Testo completo
Abstract (sommario):
The kinetic and dynamic characteristics of the sorption of rare earths metals (REE) from no evaporated extration phosphoric acid (EPA) of dihydrate production on macroporous strongly acidic cation Rurolite C150 were investigated. The process of sorption of rare earth metals was established to take place in the external diffusion region.
Gli stili APA, Harvard, Vancouver, ISO e altri
30

DAS NEVES, Paulo Cesar Pereira, Darcson Vieira de Freitas e Lavinel G. IONESCU. "INERALOGICAL ASPECTS OF RARE EARTH ELEMENTS". SOUTHERN BRAZILIAN JOURNAL OF CHEMISTRY 18, n. 18 (20 dicembre 2010): 37–43. http://dx.doi.org/10.48141/sbjchem.v18.n18.2010.40_2010.pdf.

Testo completo
Abstract (sommario):
Rare earth elements or rare earth metals are group elements including the fifteen lanthanides (Z=57 to Z=71). Scandium (Z=21) and Yttrium (Z=39) are considered rare-earth by IUPAC since they tend to occur in the same ore deposits as the lanthanides and have similar chemical properties. The present article describes the mineralogical properties of the yttrium and the lanthanides. A total of two hundred and seventy-seven (277) minerals are known, the most common being monazites and bastnazites. Rare earth metals have many important industrial applications.
Gli stili APA, Harvard, Vancouver, ISO e altri
31

Malinovskaya, Tatyana D., Roman A. Nefedov, Ouna B. Sambueva e Victor Sachkov. "Advanced of Rare Earth Fluorides Technology". Advanced Materials Research 1085 (febbraio 2015): 229–32. http://dx.doi.org/10.4028/www.scientific.net/amr.1085.229.

Testo completo
Abstract (sommario):
The thermochemical processes of synthesis and purification of rare earth metals fluorides through the transfer of fluoroammonium complexes were discussed. By differential thermal calorimetry the temperature maxima of rates of formation and decomposition of complex compounds were defined and the values of the apparent activation energy processes were determined. It is possible the use of fluoroammonium systems to develop the preparation of anhydrous fluorides of rare earth metals.
Gli stili APA, Harvard, Vancouver, ISO e altri
32

Azhar, Muhamad, Solechan Solechan, Retno Saraswati, Putut Suharso, Suhartoyo Suhartoyo e Budi Ispriyarso. "The New Renewable Energy Consumption Policy of Rare Earth Metals to Build Indonesia's National Energy Security". E3S Web of Conferences 68 (2018): 03008. http://dx.doi.org/10.1051/e3sconf/20186803008.

Testo completo
Abstract (sommario):
This study aims to discuss the policy of using renewable energy in the form of rare metal eart as an effort to build national energy security. The research method used a legal research looking from various perspectives in social science. Law is seen as a space for the process of scientific study in order to seek truth. The use of relevant legal research wants to understand the law more thoroughly. In performing implementation analysis, using the method of Regulatory Impact Assessment (RIA) with focus on energy regulation. The results of the study show that: First, the policy of the Indonesian republic government regarding the use of new energy and renewable energy aims to prepare the carrying capacity of national energy security. This policy has not fully gone well. The policy is not supported by consistency in issuing derivative policies. Second, the use of new energy and renewable energy, especially rare earth metals as part of efforts to encourage national energy security in Indonesia is still very far from expectations. The use of rare eart metal is only around 0.7% of the use of new energy. Efforts to explore and exploit rare earth metals have not been carried out in a timely manner. Whereas the potential of rare earth metals is a strategic community and has the potential to encourage national energy security in Indonesia. Indonesia is projected to produce rare earth metals reaching 20% of the world's supply.
Gli stili APA, Harvard, Vancouver, ISO e altri
33

Cherednichenko, V. S., A. S. An’shakov, V. A. Serikov e V. A. Faleev. "Plasma Carbothermic Reduction of Rare-Earth Metals". Russian Metallurgy (Metally) 2018, n. 6 (giugno 2018): 507–12. http://dx.doi.org/10.1134/s0036029518060071.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
34

Liberman, David, e Andrew Zangwill. "Quadrupole resonances in the rare-earth metals". Physical Review A 39, n. 1 (1 gennaio 1989): 415–16. http://dx.doi.org/10.1103/physreva.39.415.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
35

Ogata, Y., H. Chudo, M. Ono, K. Harii, M. Matsuo, S. Maekawa e E. Saitoh. "Gyroscopic g factor of rare earth metals". Applied Physics Letters 110, n. 7 (13 febbraio 2017): 072409. http://dx.doi.org/10.1063/1.4976998.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
36

Bautista, Renato G. "The Growing Interest in Rare Earth Metals". JOM 40, n. 5 (maggio 1988): 21. http://dx.doi.org/10.1007/bf03258905.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
37

F. Berk, N., J. J. Rush, T. J. Udovic e I. S. Anderson. "Anomalous hydrogen dynamics in rare earth metals". Journal of the Less Common Metals 172-174 (agosto 1991): 496–508. http://dx.doi.org/10.1016/0022-5088(91)90170-9.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
38

Blyth, R. I. R., S. S. Dhesi, P. A. Gravil, K. Newstead, R. Cosso, R. J. Cole, A. J. Patchett, T. Mitrelias, N. P. Prince e S. D. Barrett. "Surface electronic structure of rare earth metals". Journal of Alloys and Compounds 180, n. 1-2 (marzo 1992): 259–63. http://dx.doi.org/10.1016/0925-8388(92)90390-u.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
39

Borzone, Gabriella, Riccardo Raggio e Riccardo Ferro. "Thermochemistry and reactivity of rare earth metals". Physical Chemistry Chemical Physics 1, n. 7 (1999): 1487–500. http://dx.doi.org/10.1039/a900312f.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
40

Gschneidner, K. A. "Physical properties of the rare earth metals". Bulletin of Alloy Phase Diagrams 11, n. 3 (giugno 1990): 216–24. http://dx.doi.org/10.1007/bf03029283.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
41

Khorev, A. I. "Alloying titanium alloys with rare-earth metals". Russian Engineering Research 31, n. 11 (novembre 2011): 1087–94. http://dx.doi.org/10.3103/s1068798x11110104.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
42

Shinjoh, Hirohumi. "Rare earth metals for automotive exhaust catalysts". Journal of Alloys and Compounds 408-412 (febbraio 2006): 1061–64. http://dx.doi.org/10.1016/j.jallcom.2004.12.151.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
43

Sakurai, J., S. Nakatani, A. Adam e H. Fujiwara. "Magnetoresistance of RAgSn (R: rare-earth metals)". Journal of Magnetism and Magnetic Materials 108, n. 1-3 (febbraio 1992): 143–44. http://dx.doi.org/10.1016/0304-8853(92)91386-8.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
44

Nieland, Anja, Jan-Hendrik Lamm, Andreas Mix, Beate Neumann, Hans-Georg Stammler e Norbert W. Mitzel. "Alkynyl Compounds of the Rare-earth Metals". Zeitschrift für anorganische und allgemeine Chemie 640, n. 12-13 (13 agosto 2014): 2484–91. http://dx.doi.org/10.1002/zaac.201400158.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
45

Klementyeva, Svetlana V., Taisiya S. Sukhikh, Pavel A. Abramov e Andrey I. Poddel’sky. "Low-Coordinate Mixed Ligand NacNac Complexes of Rare Earth Metals". Molecules 28, n. 4 (20 febbraio 2023): 1994. http://dx.doi.org/10.3390/molecules28041994.

Testo completo
Abstract (sommario):
We report the synthesis and characterization of two types of new mixed-ligand rare earth complexes: tetracoordinate (NacNacMes)Ln(BIANdipp) (Ln = Dy (1), Er (2) and Y (3)) and pentacoordinate (NacNacMes)Ln(APdipp)(THF) (Ln = Dy (4), Er (5) and Y (6)). The first three compounds were prepared by the reaction of [(BIANDipp)LnI] with potassium β-diketiminate. The salt metathesis of β-diketiminato-supported rare earth dichlorides (NacNacMes)LnCl2(THF)2 with sodium o-amidophenolate results in compounds 4–6. The crystal structures of complexes 1–6 were determined by single-crystal analysis. The combination of bulky monoanionic N-mesityl-substituted β-diketiminates with sterically hindered redox-active ligands led to the very low coordination numbers of rare earths and strong distortion of the chelate ligands.
Gli stili APA, Harvard, Vancouver, ISO e altri
46

Dragomir, Daniela, Mihai Cojocaru, Leontin Druga, Zoltán Kolozsváry e Andrei Berbecaru. "Influence of Rare Earth Metals on Carburizing Kinetics of 21NiCrMo2 Steel". Advanced Materials Research 1114 (luglio 2015): 206–13. http://dx.doi.org/10.4028/www.scientific.net/amr.1114.206.

Testo completo
Abstract (sommario):
The influence of rare-earth metals adsorbed in the surface of the metallic material subject to thermochemical processing as well as of those pre-added in the material matrix on the kinetics of layers growth is presented in the technical literature. It is generally concluded that the presence of rare earths is accelerating the kinetics of layer growth.
Gli stili APA, Harvard, Vancouver, ISO e altri
47

Quill, Laurence L., Richard F. Robey e Sam Seifter. "The Rare Earth Metals and Their Compounds: Thermal Analysis of Rare Earth Nitrate Mixtures". Einstein Journal of Biology and Medicine 24, n. 1 (2 marzo 2016): 26. http://dx.doi.org/10.23861/ejbm20082463.

Testo completo
Abstract (sommario):
A method of analysis is proposed which utilizes thecharacteristic melting points of the hydrated salts andthe liquidus curves of the binary salt mixtures for theestimation of the composition of rare earth mixtures.Several binary salt systems were investigated, employingvery pure simple and double rare earth nitrates toprovide basic information concerning the possibilitiesof the method.
Gli stili APA, Harvard, Vancouver, ISO e altri
48

Jumadilov, T. K., Kh Khimersen, B. Totkhuskyzy e J. Haponiuk. "Adsorption methods for the extraction and seperation of rare earth elements. Review". Kompleksnoe Ispolʹzovanie Mineralʹnogo syrʹâ/Complex Use of Mineral Resources/Mineraldik Shikisattardy Keshendi Paidalanu 318, n. 3 (12 settembre 2021): 12–23. http://dx.doi.org/10.31643/2021/6445.24.

Testo completo
Abstract (sommario):
Rare earth elements play an important role in the production, energy, and high technology. Due to the rapid development of industry, the demand for rare earth metals is rising every day. Therefore, it is necessary to improve the extraction of rare earth metals from various sources to meet the demand for these elements. Currently, pyro- and hydrometallurgical technologies are used to extract rare earth metals from an ore and other secondary sources (industrial wastewater, acid drainage mines, etc.). Hydrometallurgical technologies include precipitation, extraction, adsorption, and ion exchange methods. Adsorption is one of the most effective methods for the extraction and separation of rare earth elements. Adsorption methods are highly selectivity to metal ions and have low emissions. However, not all adsorbents are effective in producing the same metal ions. This study provides an overview of the different adsorbents that can be used to extract rare earth elements from aquatic systems. Hydrogels and molecular polymers have been found to be cost-effective methods for high-grade rare earth metals. Further research is needed to ensure the performance of these systems.
Gli stili APA, Harvard, Vancouver, ISO e altri
49

Semenova, M. I., A. V. Smirnov, A. Sokolov, A. S. Kovalevskaya e O. V. Smolova. "Biotechnical toxicity assessment system of rare earth metals compounds". SAFETY OF TECHNOGENIC AND NATURAL SYSTEMS, n. 4 (2020): 56–67. http://dx.doi.org/10.23947/2541-9129-2020-4-56-67.

Testo completo
Abstract (sommario):
Introduction. Expanding the scope of application of rare-earth metal compounds that are unique in their properties increases the interest of many researchers in studying the impact of rare-earth metals and their compounds on human health and the environment. One of the most relevant and modern methods for assessing the safety of the studied media for a biological test object is bioassay. Problem Statement. The objective necessity of determining the combined effect of rare earth metals and their compounds on human health and the environment involves the use of biological systems. Modern methods of bioassay are extremely sensitive, which is sufficient to determine sub-threshold concentrations of hazardous substances in accordance with international standards. Thus, the use of these methods can make it possible to determine the index and the degree of toxicity of rare earth metal compounds with high accuracy in order to prepare a package of necessary documentation on industrial safety of products. Theoretical Part. Based on the studied toxicological effects of rare earth metals, the authors proposed to conduct a toxicity assessment based on the concept of biotechnical systems. The object of research was oxides and carbonates of rare earth metals. The results of the study to determine the index and the degree of toxicity of rare earth metal compounds, as well as to assess the lethal concentration of LC50 (24 h) by biotesting using test organisms Paramecium Caudatum were used to write a safety data sheet for cerium oxide and carbonate. Conclusion. The studies have shown that a certain modification of the technical solutions embedded in the devices of the Biotester series makes it possible to correctly solve the problem of assessing the toxicity of rare earth metals and their compounds. Based on the research results, the safety data sheets were developed.
Gli stili APA, Harvard, Vancouver, ISO e altri
50

Cabrera, José María, Ignacio Mejía e José Manuel Prado. "Effect of rare-earth metals on the hot strength of HSLA steels". International Journal of Materials Research 93, n. 11 (1 novembre 2002): 1132–39. http://dx.doi.org/10.1515/ijmr-2002-0194.

Testo completo
Abstract (sommario):
Abstract An experimental study was done on the effect of rare-earth metals on a high-strength low-alloy steel. The work was focused in deriving the influence on Ce and La on the hot-working behavior. For this purpose, uniaxial hot-compression tests were carried out in a wide range of temperatures and strain rates. The effect of the rare-earth metals was determined by comparison of the characteristic parameters, describing the constitutive equations of the high-temperature response of the steel with, and without, rare-earth metals. The results showed that rare-earth metals were playing a major significant role on hardening mechanisms rather than on softening by dynamic recovery. On the contrary, rare-earth metals were able to delay the onset of dynamic recrystallization. All the present experimental results suggested that the latter roles are played by solid solution strengthening, through a solute drag effect, and not by precipitated particles.
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!

Vai alla bibliografia